Author Archives: Lord Zed

Refactoring

Refactoring is an important concept in software development
that refers to the process of modifying and improving the internal structure of
existing code without changing its external behavior. This can be a useful
technique for improving the readability, maintainability, and performance of a
codebase, and it is often an essential part of the software development
process.

There are many reasons why a developer might choose to
refactor their code. One common reason is to improve the readability and
understandability of the code. Over time, as a codebase grows and evolves, it
can become difficult to understand and maintain. Refactoring can help to clean
up the code and make it more organized and easier to read. Another reason to
refactor code is to improve its maintainability. As a codebase grows and
changes, it can become more difficult to make updates and modifications without
introducing bugs or breaking existing functionality. Refactoring can help to
make the code more modular and flexible, which can make it easier to make
changes and updates without breaking the code. Refactoring can also be used to
improve the performance of a codebase. As code is written and optimized, it can
sometimes become inefficient or slow. Refactoring can help to identify and
remove bottlenecks, and to optimize the code for better performance.

I chose this blog post on refactoring because it is a
crucial concept in the field of computer science. As I read through the post, I
found it to be very informative and well-written. The post clearly explained
what refactoring is and described the various benefits it offers, such as
improving readability, maintainability, and performance. I found the discussion
of different techniques for refactoring code particularly interesting.
Techniques like extracting methods or functions, renaming variables and
functions, and restructuring code can all be effective ways to make code more
modular, readable, and maintainable. I also appreciated the emphasis on maintaining
the external behavior of the code during refactoring. This is something I will
keep in mind as I continue to learn software development. Although refactoring
wasn’t required in this class, I plan to use what I learned on future projects
and when working with others on a team. I will refer to this resource as I
continue to improve my skills and knowledge in the field.

Source:

https://maddevs.io/blog/code-refactoring/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.

Unified Modeling Language (UML)

Unified Modeling Language is a standardized language to
visually represent software construction, design, and architecture. UML designs
are process independent, and often omit irrelevant, or insignificant
relationships and attributes in favor of simplicity. UML diagrams can be used
to represent a variety of things in several ways. UML diagram can be classified
into two main categories: Structure Diagram, and Behavioral Diagram.

Structure diagrams show the structure of objects and the
relationship/interaction between those objects. Structure diagrams are to be
considered descriptive and behave like a blueprint for the code, i.e., it can
be used to inform the design of written code. Class diagrams are one of the
most frequently used Structure diagrams in software development. It shows each
of the classes in a system with their attributes, class methods or operations,
the scope of every attribute and method within a class, and the relationship
between two or more classes. A class diagram has three parts: Class Name, Attributes,
and Methods. The name of the class is always at the top, while any attribute
like a variable is in the middle. A note can be added pointing to the attribute
to show any individual specification or requirement. The methods are listed at
the bottom and can similarly have notes pointing to the method to show any
individual specification or requirement. Arrows are used to describe the
relationship between two or more classes. Depending on the arrow the specific
relationships can be identified. The various relationships are Association, Dependency,
Implementation, and Inheritance.

Behavioral diagrams show the intended function of the system
and any objects it contains. They describe how those objects should interact
with each other to make the system functional. Behavioral diagrams are
considered prescriptive, i.e., they show how the written code should work in
the system.

As a CS student, I found this
blog post on UML diagrams to be highly relevant and useful. Homework 1 and
Homework 2 provided a great opportunity to delve into the complexities of these
diagrams and gain a deeper understanding of their various properties and concepts,
especially for Class Diagrams. It will very likely be useful in future classes
as UML diagrams allow you to be able to communicate your design ideas effectively
to other members of your group, ensuring that everyone is on the same page and
working towards the same goal. They can also be a valuable resource for
documenting and maintaining software systems, making it easier to understand
and modify the system as needed. For example, the visibility of attributes and
the connections between classes, as represented by arrows, are crucial elements
that contribute to the overall coherence and functionality of UML diagrams.
Additionally, the provided examples helped to clarify and illustrate these
concepts in a clear and concise manner.

 

Source:

https://creately.com/blog/diagrams/uml-diagram-types-examples/

https://www.uml-diagrams.org/

 

From the blog Zed's Blog by Lord Zed and used with permission of the author. All other rights reserved by the author.