Category Archives: Software Quality Assurance

Pairwise and Combinatorial Testing

The article “Combinatorial Testing” focuses on the insights of software testing methods. This article explores the evolution of combinatorial testing, talking about advancements in algorithm performance and constraint representation. The article also talks about the importance in detecting interaction failures within software systems. The article also demonstrates the effectiveness of t-way combinations fault detection across various domains. The article “Pairwise Testing” talks about pair testing as a permutation and combination technique aimed at testing each pair of input parameters to ensure that the system if functioning properly across all possible combinations. The article also addresses the many benefits of pairwise testing and it’s role in reducing test execution time and cost while maintaining test coverage. Also, it talks about the challenges associated with pairwise testing, including the limitations in detecting interactions beyond pairwise combinations.

Pairwise Testing

pairwise testing is a software testing method that aims to comprehensively validate the behavior of a system by testing all possible pairs of input parameters. This method is mainly used when many of the defects in software systems are triggered by interactions between pairs of input parameters, rather than by individual parameters in isolation.

Benefits & Challenges

some benefits that pairwise offers is, efficiency: by testing the combinations of two input parameters at a time. This reduce’s the number of test cases required compared to exhaustive testing. pairwise testing also offers effective defect detection: by effectively finding defects that are triggered by interactions between pairs of input parameters, pairwise testing also helps to identify certain scenarios by systematically exploring pairs of parameters. Some challenges that pairwise testing may face is when it comes to parameter selection. Selecting the right parameters is crucial and requires a lot of knowledge of the software and it’s potential interaction scenarios. If the wrong parameter is selected this can lead to incomplete test coverage and missed defects.

Combinatorial Testing

Combinatorial testing is a software testing technique that focuses on efficiently testing the interactions between different input parameters of a system. This test method involves generating a set of test cases that include various combinations of input values / specific parameter values.

Benefits & Challenges

Some benefits of combinational testing include improved software quality: by being able to identify and address the interaction failures early in the development process. This test method tests various combinations of input parameters, which can help find defects that could impact the systems performance. A challenge that combinational testing may face is the scalability. Combinatorial testing is effective for small to medium sized systems and when scaling it to large and complex systems with a high number of input parameters and values, you may run into some problems.

Why did I pick this Article?

I pick these two article that talk about pairwise and combinatorial testing because both these test methods stand at the forefront of software test methods. The article’s goes into details about how both of these test methods offer an efficient way to ensure comprehensive test coverage while minimizing redundancy. Both of these articles have taught me a lot about pairwise and combinational testing.

Reflection

After reading both of these articles, I have gained a greater understanding of both these test cases. With the new found knowledge, I aspire to apply pairwise and combinatorial testing techniques in my future projects. Both these test methods offer practical solutions to common testing challenges, and by incorporating them into my future endeavors I aim to contribute to the development of reliable software systems.

Article link is here: https://www.sciencedirect.com/science/article/abs/pii/S0065245815000352

https://testsigma.com/blog/pairwise-testing/

From the blog CS@Worcester – In's and Out's of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Understanding Test Driven Development in Software Engineering

Test Driven Development is a method in software development in which tests are created before the actual code. By writing test before hand, developers have a clear understanding of what will need to implemented, which can help avoid unnecessary errors. This approach will help to have the software behave as expected. This method is a structured and systematic approach. This test method is doesn’t just focus on testing, however it also focuses on quality and behavior. The main goal of this test method is to ensure that the code meets the specified requirements and behaves as expected. Test Driven Development helps with clarifying requirements, reducing defects, and improving the code maintainability.

How does it work?

Test Driven Development operates on a cycle like, first write a test, second make it run, third change the code to make it pass, and then repeat. Developers should first write a test that will analyze the behavior that they want implement. After running the test and writing and rewriting the code to make the test pass, developers will then need to continue reframing the code to improve it’s design and maintainability without changing it’s behavior. This process will make sure that that each piece of code is throughly tested and validate before moving on to the next.

Test Driven Development vs Traditional Testing

The difference between Test Drive Development and Traditional testing is that test driven development method has a different approach and objective. Traditional testing methods usually aim to find bugs or even defects in code, test driven development mainly focuses on making sure that the code meets the specific requirements. A failed test in test driven development method tells the developers to write new code to fulfill the requirement’s, and it also tends to make sure that the code will be lead to higher quality, with fewer defects.

There are also two levels of test driven development that focuses on different aspects of software development. Those two levels being Acceptance TDD and Developer TDD. Acceptance involves writing acceptance test that verify the overall behavior of the systems based on the users requirements. Development TDD, focuses on writing unit tests for individual components or modules of the system.

Why Did I pick this Article?

I chose this article because Test Driven Development is a very important concept in software engineering. This article has taught me a lot about test driven development , which include numerous benefits like improved quality of code, reduced bugs and fewer defects, and faster development cycle. These many advantages are valuable for any software development project.

Reflection

After reading this article, i have learned a lot about Test Driven Development and it’s many advantages. One key take away for me was how in this method developers are to write test before actually writing the code, which can help in clarifying and ensuring that the code is correct and meets the required specifications. I also found how the article talks about the difference between test driven development and traditional testing methods. Learning about the Acceptance TDD framework helped me with my understanding of how test drive development can be scaled for larger projects and integrated into Acceptance methods.

Now that my understanding has been enlighten with this new found valuable knowledge and insights into test driven development methods, I can apply this in my future software development projects. I will also be able to writer better, cleaner, and more maintainable code when using this method.

Article link is Here: https://www.guru99.com/test-driven-development.html

From the blog CS@Worcester – In's and Out's of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Black Box Testing vs White Box Testing

Black box testing is a testing methodology that focuses on the end-user experience without delving into the internal design. White box testing is a testing methodology that focusses on the internal code, design, and structure of an application. In the article ” Black box vs White box testing” the author talks about the differences among them and when & why we should use these test methods.

The primary key differences the two software testing methods have

The primary differences between both testing methods are the process, techniques, and the operations. When it comes to the “process” the black box method begins with a clear understanding of the software’s functional requirements. The testers will rely on external specifications to formulate test cases, while the white box method requires a comprehensive understanding of the internal code, design, and structure of the software. The testers will need access to the source code. When it come to the “techniques” the black box method use a techniques called “equivalence class partitioning (ECP)”, this technique calls for the input values for the application or system to be classified based on outcome similarity. The white box method uses a technique called “Statement coverage” where all statements are at least once executed at the source code level in this method. Finally, when it comes to the ” operations “ the black box testing method main goal is to ensure the system works flawlessly for the end user, while the white box methods main goal is to ensure that an application’s code scores high in quality and integrity.

Why did I pick this Article?

The reason why I picked this article is because it was clear in explaining the many concepts of Black box and White box testing. As a student taking this course this article was very helpful and gave me a greater understanding of both these test methods and their differences.

Personal Reflection

The content of this article really increased my understanding of the software test methods, Black box and White box. Understanding Black box and White box testing is essential in the world of software development and quality assurance. This newfound knowledge will help me to make better choices in the future when I am dealing with test methods.

The full Article is Here: https://www.spiceworks.com/tech/devops/articles/black-box-vs-white-box-testing/

From the blog CS@Worcester – In's and Out's of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Object-oriented Testing

Object-oriented testing revolves around the examination of individual classes within an object oriented program. Objects are instances of these classes. In the article ” Object Oriented Testing in Software Testing” , the author talks about the evolution between old testing methods to object-oriented testing. The author also talks about the advantages of object oriented testing, which include reliability, extendibility, and reusability.

Navigating Object-Oriented Testing

Strategies and techniques for developing test cases in Object Oriented Testing could include Fault-based testing, scenario-based testing, and class testing based on method testing,. These different test cases / techniques play a pivotal role when it comes to trying to find all defects, improper interactions among classes, or being less time consuming. Object-oriented testing can however present some challenges such as testing inheritance in larger systems or the inability to dynamically test classes.

Why did I pick this Article?

I chose this article because it offers a great understanding of Object-oriented testing and highlights the many techniques that can be used, also the many different advantages of Object oriented testing. Moreover, the article does a good job explaining the evolution of testing methods, to object-oriented testing and some challenges you may face in testing Object-oriented programs.

Personal Reflection

This article has broadened my understanding of object-oriented testing, specifically detailing the transition from old traditional methods to object-oriented. I was also able to grasp the many advantages and challenges that object oriented presents, allowing me to know why we should and should not use it in certain scenarios. The knowledge gained from reading this article will play a pivotal role when approached to testing in object-oriented environments. The knowledge for developing test cases and the advantages and challenges will guide me in future projects.

The full Article is here: https://www.scaler.com/topics/software-testing/object-oriented-testing-in-software-testing/

From the blog CS@Worcester – In's and Out's of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

An Intro to TestProject as an Automated Testing Tool

Classes restarted last week, and during the first week I found myself reading and writing a lot of introductory blog posts about upcoming semester course topics. As part of my setup tasks for CS-443 Software QA and Testing, I read about one of the most popular manual API Testing tools Postman and saw reference to TestProject, an automated testing tool from the same company Tricentis. So, I decided to do some further reading into TestProject as I understood the basics of manual testing, but had not seen automated testing in action yet. To do so, I found a blog post on the Tricentis site containing an overview tutorial of API testing and how platforms like Postman and TestProject can be valuable.

The post begins by discussing the value in API Testing and mentions the utility of Postman, but also brings up some of the limitations that are commonly encountered such as test automation, scheduling, and end-to-end test reporting. Intro TestProject → This testing platform offers solutions for end-to-end API testing by providing an environment to not only test API’s, manually but also to automate API-based test flows, schedule and run them periodically, and generate execution reports without the need for third party tools or writing any code.

The blog also contains a six chapter tutorial on using TestProject, so I delved into Chapter 1 – Basic API Test Automation. This emphasizes the platform’s ability to handle a wide variety of input sources like HTML, Databases, and more, then showing the application GUI and taking the reader through how to add ‘test steps’ in TestProject to set up automated testing for a GET HTTP request using NASA’s public APIs including search parameters and discussion on Dynamic Endpoint URLs (and implementing them) amongst others. Chapter 2 offers another brief tutorial discussing the value of scheduling automated tests with image steps (guide) to doing so with interactions to Android and iOS systems.

From these introductory chapters, I was able to get a basic idea of how to use TestProject to design calls, execute tests and access result reports. The other chapters in this TestProject tutorial cover more advanced API testing and validation flows, shell commands, scheduling API automation and more. As an introduction to Quality Assurance Testing and the course in general, this chapter was intriguing and valuable to get an idea of what an automated software testing tool looks like and how to use it in a basic sense. Stay tuned to read more about these other chapters and other topics in software quality assurance and testing and other exciting computer science related topics!

Sources:
General TP Post: https://blog.testproject.io/2020/11/10/automating-end-to-end-api-testing-flows/

Chapter 1: https://blog.testproject.io/2020/11/10/basic-api-test-automation/Chapter 2: https://blog.testproject.io/2020/11/10/api-test-automation-flows-combined-with-mobile-functional-test/

From the blog CS@Worcester – Tech. Worth Talking About by jelbirt and used with permission of the author. All other rights reserved by the author.

Exploring the in’s and out’s of Software Quality Assurance.

SQA ( Software Quality Assurance)

This blog is dedicated to exposing the reader to best practices while performing Software Quality Assurance.

Within this blog you will find different types of content regarding;

  • System testing (exploring ways to address defects or errors) 
  • Security testing ( exploring different ways companies can reduce risk) 
  • Code Reviews ( exploring code quality and ways to improve) 
  • Performance Testing ( exploring performance issues and ways to improve) 
  • And more…

This blog post will be closely related to the course taught within most computer science majors at colleges entitled, Software Quality Assurance and Testing, which covers these topics and more. Stay tuned for the latest entry for this blog and how you can be informed on the latest news on SQA Testing practices. 

From the blog CS@Worcester – In's and Out's of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

QAn’t Wait to See You Again

CS SERIES (16)Before I dive into my final installment of this CS series (for now), I wanted to say thank you if you actually read any of these posts and thank you to my new followers for dealing with the notifications you must have gotten.

For this last post, I wanted to discuss the article 5 Reasons You Are Wasting Your Testing Time by Joel Montvelisky. The author expresses how everyone can do testing but not everyone can do “good testing,” which incorporates more than just what is basic checking.

A short list of main reasons why a lot of people tend to waste time that could have been spent testing other things includes:

  • Not having clear goals
  • Not understanding what or how much the feature means to your End User
  • Not keeping track of what was tested and potential discoveries
  • Not consulting what you already know or using references
  • Not giving feedback that could be shared to help others

Sam CS (22)I agree with most of what Montvelisky says as I have personally noticed what has happened from my experience as a Software Quality Assurance Intern when any of the five things above took place based on a task. It is important to understand that sometimes these things may be out of your control but you should still try your best to avoid miscommunication wherever possible.

Montvelisky’s content has not necessarily changed the way I will work as I have already been consciously making an effort to understand what I am reviewing, how stuff is meant to work, logging tasks, connecting tasks to previous occurrences, and communicating with the QA team. If I had read this article before I started working, it would have been more useful as it would serve as a foundation to how one should think of testing beyond the basic functionalities.

Something I wanted to emphasize is the post-test reviews and feedback sessions with peers. I found that if someone else needed to learn about a project or a task had to be communicated with a client, logging any kinds of notes or information was better than not having anything prepared to discuss. They do not necessarily have to be posted for everyone to access but it would be good to note it in any sort of text editor for future reference. I think an example of when to note things is if you found something that does not prevent your current task from being approved but it still affects something for the overall program.

Overall, when testing things I believe you should trust your instincts on reporting things you find. It helps when you try to imagine how much it could affect a program in the long run if not brought to someone’s attention, even if it may seem minimal.

Best of Luck,

Sam


Article: https://qablog.practitest.com/5-reasons-you-are-wasting-your-testing-time/

From the blog CS@Worcester by samanthatran and used with permission of the author. All other rights reserved by the author.

Test Yourself Before You Wreck Yourself

CS SERIES (14)Testing, testing. I may need your approval on this article I read by Software Testing Magazine on Approval Testing. Approval testing, as defined by this article, is a way of software testing that results in presenting the before and after of an application for a user (ex: software development team) to review it and potentially approve it. It’s more of a visual representation of testing and one of the major cons is how the results have to be checked manually.

Some testing tools mentioned include: Approval Tests, TextTest, Jest, Recheck, Automated Screenshot Diff, Depicted (dpxdt), and etc.

The main purpose of the software testing tool, using TextTest for example, is checking that the text output after running program from the command line in different ways.

What I found interesting is how a user can see that a test technically could have “passed” or “failed” but still decide to mark it as the other because they choose what feature they are looking for in the end. This makes it a little more flexible to use approval testing as it is more of a guide or guideline for a user instead of only seeing one word and then a short description of what could have gone wrong. I think this process is much more transparent or descriptive with a user about what could have gone wrong or what went right.

One way the content has changed how I will think about the testing is how there are so many more types of software or programs out there than we can imagine which help us better code or create our own software and programs. This one is especially good for visual coders and testers who like to see their results firsthand to compare what they are expecting with what they actually got.

Overall, I found this article was useful because it introduced me to thinking about a better way of logging the differences between what the reference result is versus the actual result. I did not disagree with any of it since it showed us how we can use approval testing to our advantage while still being honest about its limitations.


Article: http://www.softwaretestingmagazine.com/knowledge/approval-testing/

From the blog CS@Worcester by samanthatran and used with permission of the author. All other rights reserved by the author.

test | prueba | thử nghiệm

CS SERIES (10)If you happen to be reading this page translated from English to another language, hello there, you are one of the main characters of this blog post. Without linguistics, the study of language and its structure, we probably would not be able to figure out how to communicate everything we need to globally while being able to understand it at the same time while testing. There are so many online resources that cover what a specific country or region in a country uses in terms of data formats for their computer systems.

Stickyminds featured an article from Mukesh Sharma on Linguistic Testing: Setting Up Your Software for Global Quality. Sharma dives in by explaining what exactly linguistic testing is–which is testing not only localization but also internationalization. These words basically mean everything we are testing on the software either is or would be fully functioning across the globe.

I found this content thought-provoking as I never specifically thought about how developers and testers would have to consider culturally-aware attributes like the formatting for texts, dates, and currencies. As more and more people are gaining access to the internet across the world, that means there are even more and more platforms to test for gauging market readiness.

An example of a situation that could happen in real life I can think of when testing functionality on websites is for international shipping addresses. If a user, we’ll call him Zayn, from London, England is ordering something from a company based in Boston, Massachusetts (USA) and puts in his shipping address, it should not require him to select a “State” under one of the fields after he selects “United Kingdom / England” as his country option. If that field still requires Zayn to select a state when his country location does not have states, there is a problem.

This will change the way I think when I work as when developing code to solve problems or create something new, I will have to think about if the market or target audience goes beyond the USA. When testing the code, of course every possible scenario must be tested already but there will have to be more details to make sure it all goes smoothly–especially since international errors or problems usually take up more effort to fix as communication plays a big factor.


Article: https://www.stickyminds.com/article/linguistic-testing-setting-your-software-global-quality

From the blog CS@Worcester by samanthatran and used with permission of the author. All other rights reserved by the author.

No Ragrets(sion) Testing

CS SERIES (5)“Forget about automating your regression tests” is some bold advice from Bas Dijkstra, who has experience as a test automation consultant. It made me wonder what exactly led him to making this kind of statement on regression test scripts and his article, On Ending the Regression Automation Fixation, covered various reasons why.

Two reasons why Dijkstra says starting with automating your regression tests is not ideal includes regression scripts being too long and how regression tests are written from an end user perspective. I find this interesting as a lot of software bloggers are saying automation is not always going to be the answer and their answers have yet to make me disagree.

Sam CS (10)

The reason I chose this is because I am drawn to honesty; two examples above were explained with scenarios with failures Dijkstra has faced from creating inefficient or “plain worthless” cases.

This content will change the way I think about creating potential testing cases as there will be questions to ask myself before proceeding with the task(s) at hand. There will be a lot of reflecting on what could be consuming my test time, which parts are too repetitive, or what can just be done better. I mean of course I’ve already been considering these questions but now there will be a more conscious effort to think about them.

Dijkstra’s process especially considers the difference between how many scripts there could be when a computer is trying to translate what a human could have performed when testing. I realize how that would be an issue when trying to understand what could have went wrong or does not match up fully when there is less (specific) feedback when it comes to automation.

Thanks to this article, I will also try to predict how many layers of regression scripts would be too much of a hassle to develop ways for communication between what is being tested under the application. Overall, this information was useful as we should be reminded that “automation is meant to make your life and testing applications easier”; it should make sense and not be done at random, especially for regression testing.


Article: https://www.ontestautomation.com/on-ending-the-regression-automation-fixation/

From the blog CS@Worcester by samanthatran and used with permission of the author. All other rights reserved by the author.