Category Archives: ai

Blog post 1

The first quarter of the semester has come to a close. In CM-348 we have gone through a number of Git and GitHub features. Learning about pushing and pulling data, as well as doing some data cleaning was a great learning opportunity. As I finish my last year of school, I am trying to look at these processes in an analytical sense because that’s what I want to do moving forward.

In my free time over the past few weeks I have watched a lot of Alex The Analyst videos on YouTube. He has provided free knowledge on what it takes to become a data analyst. From interviews, to Git, to data visualization he provides a lot on his channel for people who want to learn. This week I watched his “2 Hour Data Analyst Masterclass” video. In this video, Alex breaks down what a data analyst interview process looks like from start to finish. He discusses what kinds of technical questions to expect, the importance of storytelling with data, and how to demonstrate value through projects or case studies. He also covers common interview mistakes, like not being able to explain one’s own projects clearly or failing to connect technical skills to business outcomes. This video was very insightful, he showed his viewers what skills you really need to get into the field, and it personally showed me some things I might need to work on.

I chose this resource because it’s directly relevant to where I am in my career path, as well as in my learning. I’m starting to build my portfolio and think seriously about interviews and job readiness. Alex’s advice helped me see how important communication is in data roles, it is more than being technically skilled, also being able to explain how your work impacts decisions. This connects to CM-348 because version control, documentation, and communication are key parts of the Git workflow. I am doing a bit of projecting here, but I look forward to watching more of his videos.

From the blog CS@Worcester – Tristan CS by Tristan Coomey and used with permission of the author. All other rights reserved by the author.

Reflection on “Coding Standards and Guidelines”

by: Queenstar Kyere Gyamfi

The GeeksforGeeks article “Coding Standards and Guidelines” highlights the importance of writing code that is clean and consistent. It also underlines the need for code that is easy to understand. It explains that coding standards are a set of rules and conventions that help developers maintain clarity and quality across a project. These standards cover areas such as naming conventions, indentation, code structure, comments, and documentation. The article emphasizes that following standards is not about limiting creativity. It is about making sure that everyone working on a project can easily read and maintain the code. It also points out that coding guidelines help prevent errors. They make debugging easier. They ensure that software projects remain manageable as they grow.

I chose this resource because I’ve noticed how quickly group projects can become messy. Each person having a different coding style contributes to this messiness. I’ve always cared about writing code that works. I’ve started realizing that how the code looks and reads is just as important. This is especially true in team environments. This article stood out to me because it clearly explained the purpose behind coding standards.

One key lesson I learned from this article is that consistency builds trust among developers. When everyone follows the same structure, it becomes easier to understand, review, and modify code written by others. The article also reinforced the idea that good code should be self-explanatory. For example, meaningful variable names like totalPrice or userCount communicate intent better than short, unclear ones like x or val. I also learned how proper indentation and spacing make code more readable and reduce the risk of logic errors that come from misaligned statements or missing braces.

Reading this resource made me reflect on my own coding habits. Sometimes, when I’m rushing to finish an assignment, I skip comments or mix naming styles without thinking about how confusing it might be later. Now, I see that writing clean code is an investment as it saves time when debugging and helps others understand what I meant. I also want to use tools like linters and formatters to automatically enforce standards in my projects.

Overall, this article helped me understand that coding standards are not about perfection but they are about communication. Clean, organized code reflects professionalism and respect for the next person who will read it. It reminded me that in software process management, technical skills and teamwork go hand in hand. Writing code that others can easily follow is one of the best ways to contribute to a project’s long-term success.

LINK TO RESOURCE:

https://www.geeksforgeeks.org/software-engineering/coding-standards-and-guidelines/

From the blog CS@Worcester – Circuit Star | Tech & Business Insights by Queenstar Kyere Gyamfi and used with permission of the author. All other rights reserved by the author.

From Inheritance to Strategy: Lessons from the Duck Simulator

One of the primary obstacles in software design is ensuring that code remains easy to maintain and extend. Initially, inheritance seems like the clear answerplacing shared code in a superclass and allowing subclasses to override as necessary. However, as demonstrated in the classic Duck Simulator example, relying solely on inheritance can result in fragile designs.

From Inheritance to Strategy

In the first version of the Duck Simulator, all ducks derived from a base Duck class. This approach worked until we introduced unique ducks like RubberDuck (which squeaks instead of quacking and cannot fly) and DecoyDuck (which does neither). Suddenly, we found ourselves needing to override or disable inherited methods, leading to duplication and design issues such as viscosity and fragility. Transitioning to interfaces helped to declutter the design, but it also required us to replicate code across similar ducks. The true breakthrough arrived with the Strategy Pattern,

We extracted behaviors like flying and quacking into separate classes (FlyWithWings, FlyNoWay, Quack, Squeak, MuteQuack). Now, ducks possess behaviors rather than inheriting them. These behaviors can be altered at runtime, and new ones can be introduced without changing existing code. This transition underscored the principle of favoring composition over inheritance and illustrated the Open-Closed Principle: code is open for extension but closed for modification.

Design Principles in Action

The exercise reinforced several essential principles: High Cohesion: Each behavior class excels at a single task. Low Coupling: Ducks are indifferent to how they fly or quack, only that they can delegate to a behavior. Encapsulate What Varies: Changes in behavior are contained, not dispersed across subclasses. Collectively, these factors enhance the design’s flexibility and maintainability.

UML: Clearly Communicating Design

We also engaged in the practice of illustrating designs through UML diagrams. In contrast to code, UML offers a higher-level representation that clarifies relationships: Associations (for instance, a Student possessing a schedule of Course objects). Multiplicity (for example, a student may enroll in 0–6 courses). Inheritance and interfaces (such as Faculty extending Employee and implementing HasCourseSchedule). Tools like PlantUML enable us to create these diagrams in Markdown, facilitating easy adjustments and sharing.

Key Takeaways

Relying solely on inheritance frequently results in fragile designs. The Strategy Pattern addresses this issue by encapsulating behavior and employing composition. Guiding principles such as High Cohesion, Low Coupling, and Open-Closed promote cleaner designs. UML diagrams provide us with a common language to convey and analyze code. What began as a straightforward duck simulator evolved into an insightful lesson on the significance of design patterns. By embracing the Strategy Pattern and utilizing UML for design modeling, we discovered how to construct systems that are not only functional but also resilient, adaptable, and easy to maintain.

From the blog CS@Worcester – MY_BLOG_ by Serah Matovu and used with permission of the author. All other rights reserved by the author.

Welcome to My Journey in CS 343: Software Construction, Design & Architecture

Hello everyone, my name is Rick Djouwe, and this semester I am beginning CS 343: Software Construction, Design & Architecture. I am truly excited for this class because it represents the next step in strengthening my ability to think beyond coding and focus on building well-structured, scalable, and maintainable software systems.

What This Course is About

CS 343 covers a wide range of essential topics in modern software development, including:

  • Design principles such as abstraction, encapsulation, inheritance, and polymorphism.
  • Best practices like SOLID, DRY (“Don’t Repeat Yourself”), and YAGNI (“You Ain’t Gonna Need It”).
  • Design patterns that provide reusable solutions to common problems.
  • Software architectures and frameworks, including REST API design.
  • Refactoring, code smells, and concurrency, which improve software quality and longevity.
  • Modeling and documentation tools like UML, which ensure clear communication of design decisions.

In short, this course is not just about writing code, it’s about learning to think like a software engineer who can approach problems critically, design solutions thoughtfully, and work effectively with others.

Skills and Outcomes

Through CS 343, I will gain valuable experience in:

  • Collaborating with stakeholders to design, test, and deliver software systems.
  • Applying professional judgment and staying current with evolving tools and practices.
  • Organizing projects using proven methodologies and team processes.
  • Communicating complex technical concepts clearly, both in writing and orally.

These outcomes connect directly to the broader goals of my Computer Science major: analyzing problems, building solutions, and developing the professional skills needed to succeed in the field.

Why This Matters to Me

As someone pursuing a career as a software engineer specializing in artificial intelligence, this course will help me strengthen the foundations of software design and architecture that are critical in building intelligent, scalable systems. Beyond my academic goals, I also see a strong connection to my current role as an Automation Developer at The Hanover Insurance Group, where I contribute to projects that rely on thoughtful design, testing, and collaboration. The principles and practices I learn here will make me more effective in my work today while preparing me for even greater responsibilities in the future.

I am eager to reflect on my progress throughout the semester, connect this material with experiences across my other courses, and apply these lessons directly to both my professional role and long-term career.

For me, CS 343 is more than a class, it’s a bridge between where I am now and the kind of innovative, responsible, and skilled software engineer I strive to become. I am also excited to meet everyone in this course and learn from each other as we move forward together. Feel free to reach out if you’d like to connect, collaborate, or study together this semester!

From the blog Rick’s Software Journal by RickDjouwe1 and used with permission of the author. All other rights reserved by the author.

My Experience with Software Testing and My Future: A Reflection

Photo by ThisIsEngineering on Pexels.com

I never thought software testing would teach me many new things. I had experience with it in a previous college I attend. So when transferring, I assume I would relearn a lot about what was taught. Now after experiencing the class I realize my previous lessons were a mere microcosm compared to the vast methods of testing. Which makes sense as my testing back then was done out of necessity and as a way to auto grade my assignments. I won’t go too deep in the past, as today I will discuss the present and my future instead.

Hi, this is Debug Ducker, and I want to tell you what I have to learn about software testing. I would also like to share my thoughts and feelings on my upcoming graduating and my future in computer science. I hope you enjoy.

Now software testing is more than just testing, there are methods to it, different ways to approach it. One approach I didn’t really understand until later was black box testing. Basically, you don’t see the code, but you still run it. My first thought was, “Wow, that doesn’t make sense to me”. Why would I test something that I can’t see. Then after a while I understood perfectly. You don’t have bias when you don’t see the code. The developer has an idea how the software works base on what they write, so there is a possibility that they didn’t account for something. A person who wouldn’t know what the code looks like could test best on assumptions, and could find flaws without bias. QA testing does this regularly, and I understand why it helps developers save time.

Why I feel this is important because it opens my eyes to a lot of things about software testing and how useful they can be. Node path to see how the code progresses and to spot potential issues based on the structures of the code. The many range testing methods that can help detect potential functionality issues and see what needs to be tested or not. There is so much to share but so little time.

I have learned a lot and hope to use this knowledge for the future. Speaking of which, what about my future. Well, I think that is hard to say. Once I graduated, I plan to apply to some software development positions and see what happens. This is a very strange moment in my life. Like I am reaching a major conclusion. I can only see a small part of what life has for me, and I hope they are good and without issue. I just have to apply all my skills that I have learn throughout my four years in college and hope I succeed.

Thank you for your time.

From the blog CS@Worcester – Debug Duck by debugducker and used with permission of the author. All other rights reserved by the author.

Comparing Enterprise Testing to Consumer Testing

Photo by SevenStorm JUHASZIMRUS on Pexels.com

Hello, Debug Ducker here. Last post I made was discussing the developer prioritization of quality for an enterprise product compared to a consumer product. The topic got me thinking what other things does a developer need to be concern with when it comes to Enterprise software and consumer software. What ideas or planning needed when it comes to the two.

First the differences are clear when it comes to developing and testing these types of software. For Consumer products you are developing for a large majority and prioritize the experience for an individual user. Enterprises are for mostly organization use, like a company. When making either one needs to think what is the needs for the software. Take consumer products such as photo editing, video editing, spreadsheets, etc. Enterprises product are specific to the organization that may need it to fill a specific purpose. That doesn’t mean that software that can help a business is always an enterprise software, some software is not just useful for the individual but for business like spreadsheets programs.

When it comes to developing the two products different mindsets and thoughts are needed. For consumer, you need to get into the consumers head and think what they may look for in the product. Probably not anything to specific to say but they may look for other things such as price and needs. Enterprises are different in the fact that they wouldn’t mind paying more and would want a degree of quality. I found that enterprise products tend to have more care put into them compare to consumer products but that is probably because a business wouldn’t want to upset a partner. Enterprise may want specifics that they hope the developers may be able to fill and it because of that is why software developers would work closely with business. Think of it as a bonus when it comes to working with Enterprise as it may demand more out of the developer but the advantage is if work closely, you may be able to get stuff done meeting their demands.

Testing for Enterprise software is a lot more complex to. I found some details online that list specific types to look out for.

  • Functionality Testing
    • Testing to see if it passes functionality requirements
  • Usability Testing
    • Test for optimal user experience
  • Security Testing
    • Testing for vulnerabilities
  • Performance Testing
    • Test to see how well it performance
  • Integration Testing
    • test to see if different modules and applications and external system work with it
  • Compliance and Regulatory Testing
    • Test to see if it passes legal and specific industry requirements

These are all the types of testing to look out for, when it comes to enterprises. Not to say the same can’t be done for consumers, though it is a lot more important when it comes to enterprise.

Thank you for your time, have a nice day.

The Ultimate Guide to Enterprise Software Testing – Testlio, 3 Jan. 2025, testlio.com/blog/enterprise-software-testing/.

Nasnodkar, Sid. “Enterprise vs Consumer Product Management.” Product School, 9 Jan. 2023, productschool.com/blog/product-fundamentals/enterprise-vs-consumer-product-management.

Shields, Keith. “Enterprise Software Development vs. Regular Software Development.” Custom Software Development and Mobile App Design, Designli LLC, 1 Mar. 2025, designli.co/blog/enterprise-software-development-process.

From the blog Debug Duck by debugducker and used with permission of the author. All other rights reserved by the author.

The Intersection of Manual Testing, Automated Testing, Equivalence Class Testing, and Security Testing

Hello guys, welcome to my second blog. In my previous blog, I explored JUnit testing, focusing on boundary value analysis and how to use assert Throws for exception handling in Java. Those concepts helped us understand how to write robust test cases and ensure that our software behaves correctly at its limits.

Building on that foundation, this post expands into a broader discussion of manual vs. automated testing, equivalence class testing, and security testing. These methodologies work together to create a comprehensive testing strategy that ensures software is functional, efficient, and secure.

Introduction

Software testing is a critical part of the software development lifecycle (SDLC). Among the various testing methodologies, manual testing, automated testing, equivalence class testing, and security testing play vital roles in ensuring software reliability, performance, and security. This article explores these techniques, their strengths, and how they work together.

Manual vs. Automated Testing

Testing software can be broadly categorized into manual testing and automated testing. Each approach serves specific purposes and has its advantages.

Manual Testing

Manual testing involves human testers executing test cases without automation tools. It is useful for exploratory testing, usability testing, and cases requiring human judgment.

Pros:

  • Suitable for UI/UX testing and exploratory testing
  • Requires no programming skills
  • Provides a human perspective on software quality

Cons:

  • Time-consuming and repetitive
  • Prone to human errors
  • Inefficient for large-scale projects

Automated Testing

Automated testing uses scripts and testing frameworks to execute test cases automatically. It is ideal for regression testing and performance testing.

Pros:

  • Faster execution and scalable for large projects
  • Reduces human errors
  • Works well with continuous integration/continuous deployment (CI/CD)

Cons:

  • High initial setup cost
  • Requires programming expertise
  • Not suitable for exploratory testing

Example: Java Automated Test Using Selenium

Here is a basic example of using Java to automate a test: I have a simple Calculator class and an Add method. There is a test that runs without human intervention once executed

public class Calculator {
    public int add(int a, int b) {
        return a + b;
    }
}

import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;

public class CalculatorTest {
    @Test
    public void testAddition() {
        Calculator calculator = new Calculator();
        int result = calculator.add(2, 3);
        assertEquals(5, result); 
    }
}

Equivalence Class Testing

Equivalence Class Testing (ECT) is a black-box testing technique that reduces the number of test cases while ensuring comprehensive test coverage. It divides input data into equivalence classes, where each class represents similar expected outcomes.

How It Works:

  • Identify input conditions
  • Categorize inputs into equivalence classes (valid and invalid)
  • Select one representative input from each class for testing

Example: Equivalence Class Testing in Java

Consider a function that validates age input:

public class AgeValidator {
    public static String validateAge(int age) {
        if (age >= 18 && age <= 60) {
            return "Valid Age";
        } else {
            return "Invalid Age";
        }
    }

    public static void main(String[] args) {
        System.out.println(validateAge(25)); // Valid input class
        System.out.println(validateAge(17)); // Invalid input class
        System.out.println(validateAge(61)); // Invalid input class
    }
}

Security Testing: A Critical Component

Security testing ensures that applications are protected against cyber threats. This is increasingly crucial with rising cyberattacks and data breaches.

Key Security Testing Techniques:

  • Penetration Testing: Simulating cyberattacks to identify vulnerabilities.
  • Static Code Analysis: Reviewing source code for potential security flaws.
  • Dynamic Analysis: Testing a running application for security weaknesses.
  • Fuzz Testing: Inputting random data to identify unexpected behavior.

Example: Basic SQL Injection Test

A common security vulnerability is SQL Injection. Here’s an example of a vulnerable and a secure implementation:

Vulnerable Code:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class SQLInjectionVulnerable {
    public static void getUserData(String userId) {
        try {
            Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "user", "password");
            Statement stmt = conn.createStatement();
            String query = "SELECT * FROM users WHERE id = " + userId; // Vulnerable to SQL Injection
            ResultSet rs = stmt.executeQuery(query);
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

Secure Code:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;

public class SQLInjectionSecure {
    public static void getUserData(String userId) {
        try {
            Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/mydb", "user", "password");
            String query = "SELECT * FROM users WHERE id = ?";
            PreparedStatement pstmt = conn.prepareStatement(query);
            pstmt.setString(1, userId);
            ResultSet rs = pstmt.executeQuery();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

How These Testing Methods Work Together

Each testing approach contributes uniquely to software quality:

  • Manual and automated testing ensure functional correctness and usability.
  • Equivalence class testing optimizes test case selection.
  • Security testing safeguards applications from threats.

By integrating these methods, development teams can achieve efficiency, reliability, and security in their software products.

Conclusion

A strong testing strategy incorporates manual testing, automated testing, equivalence class testing, and security testing. Leveraging these approaches ensures robust software quality while improving development efficiency.

For further exploration, consider:

From the blog Rick’s Software Journal by RickDjouwe1 and used with permission of the author. All other rights reserved by the author.

Mastering Backend Development: A Comprehensive Guide

Backend development is where the real magic happens. While users interact with the front end of an application, the backend is responsible for everything from data storage to user authentication, ensuring smooth communication between services. Mastering backend development goes beyond learning a single language or framework it’s about understanding how to build scalable, secure, and maintainable systems. In this overview, Im going to talk about the article written by DEV COMMUNITY on mastering backend development

Choosing the Right Language

Choosing the right language is the first step in backend development. Your choice depends on the project’s requirements and your long-term goals. JavaScript (Node.js) is popular for event-driven servers, while Python is great for data-centric applications. Java is ideal for enterprise solutions, and Go is well-suited for high-performance services. Each language has its strengths, so pick one that aligns with your project needs.

Understanding HTTP and Networking

Since backend services communicate over the internet, understanding HTTP is crucial. Knowing how HTTP methods like GET, POST, PUT, and DELETE work, along with concepts such as DNS, will help you design efficient and secure APIs. A solid understanding of these concepts allows smooth communication between services and ensures reliable system integration.

Working with Databases

Databases are fundamental to backend development. Whether you’re using relational databases like PostgreSQL or NoSQL databases like MongoDB, it’s essential to know when to use each. A solid understanding of database management enables you to store and retrieve data efficiently, which is crucial for building fast and scalable systems.

API Design and Development

APIs are the backbone of communication between system components. Designing an efficient and secure API is key to building scalable systems. Whether you’re using REST, GraphQL, or gRPC, consider factors like versioning, security, and documentation to make integration easy for other developers.

Security Practices

Security is essential in backend development. Implementing robust authentication methods like OAuth and JWT ensures that only authorized users can access your services. Understanding common security threats and mitigation strategies is key to protecting your system from unauthorized access and data breaches.

Caching and Performance

To optimize performance, caching is a must. Using tools like Redis or Memcached can help reduce database load and speed up response times by temporarily storing frequently accessed data. Proper caching strategies can drastically improve your system’s performance and scalability.

Scalability and Load Balancing

As your application grows, scaling becomes crucial. Load balancing tools like Nginx or HAProxy ensure that traffic is evenly distributed across servers, helping handle increased traffic without sacrificing performance. Understanding scaling strategies, such as horizontal and vertical scaling, is essential for building resilient systems.

Continuous Learning

Backend development is always evolving. Keep up with new tools, frameworks, and best practices by reading blogs, contributing to open-source projects, and experimenting with new technologies. Continuous learning is essential to becoming a skilled backend developer.

By mastering these concepts, you’ll be on your way to building robust, scalable, and secure backend systems.

Reference
https://dev.to/roadmapsh/mastering-backend-development-mpb

From the blog CS@Worcester – The Bits &amp; Bytes Universe by skarkonan and used with permission of the author. All other rights reserved by the author.

Week 15

Working inside the backend made me curious about people’s real-life experiences working in their company’s backend. I found articles about the backend but have yet to gain experience working inside it. It would be helpful to get insight into someone’s real-life experiences. By seeing others’ experiences you can learn from them and avoid any mistakes they made starting. Many beginner mistakes are big headaches when they happen, but if someone else can stop you from making them, it will be a huge lifesaver. We learn sometimes the hard way but the biggest help to prevent this is to learn from other paths. Some may think it better to go in blind I think differently. Being prepared for me is always the better option

Blessings James starts the article by advising readers that starting it may be difficult but to trust the process because the feeling after you accomplish your task is another feeling entirely. Her favorite project was working on a to-do list application with a backend using Python. It was difficult for her to work while also being data efficient. By doing research she was able to find a scalable model that worked. She also discovered some libraries including Flask-login that would do a lot of the heavy lifting. This was key for security which is often overlooked. Debugging is always a problem that comes up but she was able to gracefully fix them. API design was also a key feature wired on but swagger made it a lot easier. 

Reading this article gave me a lot of insight into someone working in the backend for a real company. There were some similarities to what were doing now including swagger. Swagger seems like the for the API design. We haven’t used all the features of Swagger but using Swagger Preview did help when doing assignments and homework. Our code was automatically able to be seen updated. One thing that interested me was Flask-login. I didn’t know you could use outside libraries but it makes sense if it is open to the public anyone can use it. It can save time by being able to use different libraries and cut your workload by half. Reading that article there was a big emphasis on security and I feel at times is overlooked. You have seen with a lot of companies when it is overlooked the outcomes are drastic. It becoming a bigger issue every day and security should be the first task on everyone’s list.

article
https://medium.com/@blessingjames1047/an-article-on-backend-ff90312c05b2

From the blog CS@Worcester – DCO by dcastillo360 and used with permission of the author. All other rights reserved by the author.

Week 14

We have collaborated on the backend for the last few weeks. It is the central workload of our work, so I wanted to find an article about it. It very much intertwined with what were doing in class and outside of class with the homework. It is a great opportunity to see other people’s experiences working in the back end and real-life experiences. You can understand more things that we didn’t dive into the class by doing research and expanding our knowledge. That is why this week I found an article that specifically goes into detail about backend development.

The article starts by mentioning the importance of the backend and how it’s often overlooked because most of the spotlight is on the front end. The back end is like what is under the hood of a car you are happy when it works without having to open the hood. That being said the front end and back end work in tandem it’s not always necessary but for this scenario yes. The front is more the user-facing elements of a website. Like the text that is being displayed, graphics, buttons, and or anything the user interacts with.While the backend focuses on the behind-the-scenes work to make the website function. Outside of a car is the front end and its engine and other components are the back end. The backend is important to complete any user request by being safe and efficient. Security and efficiency are key processes of the backend for the user experience. This is why both backend and frontend developers must work in unison to create successful applications. The main importance backend developers should go for is innovation. Technology is always evolving and people must adapt to it becoming stagnant won’t be successful in this field.

Reading this article made me understand more about backend development. Backend development has so much more to it with data and security. It makes sense because security is often overlooked at times. The more information is stored online the more we have to make the effort to secure people’s data. Nobody will want to use your application if there is a breach of security. My main takeaway was their statement about innovation. Their final message to the reader was a hopeful one stating that a developer must change with the times because they are in the epicenter of it. Technology goes far out including healthcare solutions that might not be important to some but are highly integral to a lot of people.  

https://www.ciat.edu/blog/understanding-backend-development/

From the blog CS@Worcester – DCO by dcastillo360 and used with permission of the author. All other rights reserved by the author.