Category Archives: Blog-1

Writing Cleaner Code: Breaking Out of the Student Mindset

https://www.geeksforgeeks.org/blogs/tips-to-write-clean-and-better-code/

Most of our time during our college career and learning how to create working and usable code, there was not really a strong emphasis on how to write “clean code”. Sure, best practices, industry/language standards, and formatting was explained, however, there is another aspect of code legibility and readability that is important to understand for everyone writing code. Our class this semester explores a more indepth view of what industry standards are to be followed and even helps us unlearn some basics (like comments) that we were utilizing in our code.

This article from GeeksforGeeks outlines seven key tips for writing clean, maintainable, and efficient code. It emphasizes that writing good software goes beyond just making it work; the code must be easy to read, understand, and change, as developers spend significantly more time reading code than writing it. The article indicates that adhering to certain practices leads to reliable, scalable software that is easier to debug and maintain, ultimately creating better collaboration among developers 

Some of these practices/principals are ones that we, as students, have already learned to adopt such as using meaningful names for methods and variables, as well as learning how to organize our projects, specifically when it comes to object oriented programming. A new take away that I will be more aware of is how descriptive the names are. I used to think that overly long variable names were “bad practice”, however, for the sake of readability and general understanding of the code, longer, more descriptive variable names may be indicated. 

When it comes to practices that were a new concept for me, the utilization of comments in code was an important one to unlearn. The article notes that code should be self-explanatory through clear syntax and naming. Comments should only be used when absolutely necessary, rather than stating the obvious. Another aspect of clean coding that helped me alter the way I will continue to code is the inclusion explaining how methods should only be used for a single purpose. This method, otherwise called the Single Responsibility Principal, notes that functions and classes should only do one thing and do it well. They should be small and focused, avoiding nested structures or too many arguments  

This article was important because it bridges the gap between “student code” (written for a class assignmentt) and “professional code” (written to be read and maintained by a team). Understanding how to write clean code will help immensely make all of your projects look more professional, as well as help you with technical interviews. Adopting these habits signals to employers that you aren’t just a coder who is able to put together a small school project, but a software engineer who builds sustainable, high-quality products

From the blog Anna The Dev by Adrianna Frazier and used with permission of the author. All other rights reserved by the author.

FOSS -> HFOSS

https://timreview.ca/article/399

Free and open source software (FOSS) has been a focus of our curriculum this semester. Our introduction to working with and managing the Theas Food Pantry software has provided us with experience contributing to this FOSS as well as understanding the benefits of these types of programs. The article Humanitarian Free and Open Source Software  by Chamindra de Silva dives into the important subsection of FOSS, one that focuses on humanitarian efforts and how it can benefit those in need or those suffering from a disaster event; otherwise described as “software engineers without borders”. A key aspect of this type of software – and the reason I chose to highlight this article – is that it inspires collaboration from others in the community, with the goal to make the program better, evolve it, and offer it as a tool for others to use and benefit from; therefore upholding the key principals of FOSS.

The article explores technology’s role when it comes to humanitarian efforts, it creates software to help address rapid-onset natural disasters, slow-onset natural disasters, and human instigated disasters. Many of these models support efforts to aid in managing large scale data management problems that would otherwise often overwhelm traditional information gathering methods. Humanitarian goals and values align with many in FOSS’s mission; to be available to the public to serve a common good, to rely on the support of those in a community to help others in that community, and lower cost in order to leave more funds for aid. 

However, outside of their similarities, HFOSS requires more attention to certain “best practices” due to the nature of importance within the community it is serving. It demands a product be of high quality and relatively stable because system failures can result in information loss that affects life-saving efforts. The software is required to be highly intuitive with an easy learning curve, while also being resilient to many types of political and economical and ecological environments. 

Humanitarian free and open source software has been of interest since our initial introduction to it in class. Having been aware of and utilized FOSS implementations, I was unaware of this specific movement. The idea that I can connect uniting people in our world together by helping them during times of crisis with software development and my career in tech, appeals to me greatly. Knowing that I could potentially help create software that connects people with lost loved ones (Sahana), or host maps of previously unmapped areas to help first responders (OpenStreetMaps), helps me open my mind to evergrowing opportunities afforded to me in my new career. It also gets me thinking about ways to create and tie in a HFOSS project of my own that relates to my current career in Veterinary Medicine.

From the blog Anna The Dev by Adrianna Frazier and used with permission of the author. All other rights reserved by the author.

Your First Language

I always feel that if you are better at the first language, the easier it is to learn the next one.

I learned Java in my sophomore year, and then I went to learn C, which felt easy. Because the logic of computer language is interchangeable. For example, if you learn English well, you will find some similarities between French and Spanish. Although French and Spanish maybe your second language, you will learn them much faster than non-proficient English learners. I think this applies to computer language learning as well.

Each language gives you the opportunity to use different patterns to solve problems. In the process of moving beyond your first language, you should look for opportunities to learn languages that approach problems in very different ways. Apprentices who are comfortable with object-oriented languages should explore Functional’s programming language. Students of dynamic typing should delve into static typing. Apprentices comfortable with server-side programming should take a look at user interface design.

You should not be “married” to any particular technology but should have a broad enough technical background and experience base to be able to choose the right solution for a particular situation.

Many people say Java is good because it is suitable for many kinds of software programming. Some people also say that C++ is good because its language is more advanced than Java; there are also people who have learned that learning C++ to learn Java or very simple. I personally hate to talk about what language is best, every use situation has a language that works best for it. Or if you have learned your first language well, mastering it is also a good option. But there are certain situations where C really has the best solution than Java, so we write our software in C. At this point, there is no need to stubbornly think that I am good at Java and I have to use the language I am good at to solve this problem. 

The spirit of craftsmanship is that you strive for the best in what you are good at, but in certain situations, we can’t stick to the rules. Modern society is a utilitarian society, we need to maintain the spirit of artisans while learning to adapt to the society.

From the blog haorusong by Unknown and used with permission of the author. All other rights reserved by the author.

Your First Language

I always feel that if you are better at the first language, the easier it is to learn the next one.

I learned Java in my sophomore year, and then I went to learn C, which felt easy. Because the logic of computer language is interchangeable. For example, if you learn English well, you will find some similarities between French and Spanish. Although French and Spanish maybe your second language, you will learn them much faster than non-proficient English learners. I think this applies to computer language learning as well.

Each language gives you the opportunity to use different patterns to solve problems. In the process of moving beyond your first language, you should look for opportunities to learn languages that approach problems in very different ways. Apprentices who are comfortable with object-oriented languages should explore Functional’s programming language. Students of dynamic typing should delve into static typing. Apprentices comfortable with server-side programming should take a look at user interface design.

You should not be “married” to any particular technology but should have a broad enough technical background and experience base to be able to choose the right solution for a particular situation.

Many people say Java is good because it is suitable for many kinds of software programming. Some people also say that C++ is good because its language is more advanced than Java; there are also people who have learned that learning C++ to learn Java or very simple. I personally hate to talk about what language is best, every use situation has a language that works best for it. Or if you have learned your first language well, mastering it is also a good option. But there are certain situations where C really has the best solution than Java, so we write our software in C. At this point, there is no need to stubbornly think that I am good at Java and I have to use the language I am good at to solve this problem. 

The spirit of craftsmanship is that you strive for the best in what you are good at, but in certain situations, we can’t stick to the rules. Modern society is a utilitarian society, we need to maintain the spirit of artisans while learning to adapt to the society.

From the blog haorusong by Unknown and used with permission of the author. All other rights reserved by the author.

differences and benefits between JUnit 4 to JUnit 5:

https://www.baeldung.com/junit-5-migration

According to this blog what I study for the Junit 4 and Junit5:

JUnit 5 is a powerful and flexible update to the JUnit framework, providing various improvements and new capabilities to organize and describe test cases and to help understand test results. Upgrade to JUnit 5 is quick and easy: Just update your project dependencies and start using the new functionality.

JUnit 4 bundles everything into a single JAR file.

JUnit 5 consists of three sub-projects, namely JUnit Platform, JUnit Jupiter, and JUnit Vintage.

1. JUnit platform

It defines TestEngine’s API for developing new testing frameworks that run on the platform.

2.JUnit Jupiter

It has all the new JUnit annotations and TestEngine implementations to run tests written with those annotations.

3.JUnit Vintage

Support for running tests written by JUnit 3 and JUnit 4 on the JUnit 5 platform.

But here are four strong reasons to start writing new test cases with JUnit 5:

JUnit 5 takes advantage of features from Java 8 or later, such as lambda functions, to make tests more powerful and easier to maintain.

JUnit 5 adds some very useful new capabilities for describing, organizing, and executing tests. For example, tests get better display names and can be organized hierarchically.

JUnit 5 is organized into multiple libraries, so import only the functionality you need into your project. With build systems like Maven and Gradle, it’s easy to include the right libraries.

JUnit 5 can use multiple extensions at the same time, something that JUnit 4 cannot do (you can only use one runner at a time). This means that you can easily combine Spring extensions with other extensions, such as your own custom extensions.

The JUnit 5 tests look pretty much the same as the JUnit 4 tests, but there are a few differences you should be aware of.

The import. JUnit 5 uses the new org.junit.jupiter package. . For example, org. Junit. Junit Test into org. Junit. Jupiter. API. Test.

Annotation. The @Test annotation no longer has arguments; each argument is moved to a function.

Assertions. JUnit Assertions 5 now in org. JUnit. Jupiter. API. Assertions. Most common assertions, such as assertEquals() and assertNotNull(), look the same as before, but with a few differences.

The hypothesis. Assumption has been moved to org. Junit. Jupiter. API. Assumptions.

In summary, JUnit 5’s tests are more powerful and easier to maintain. In addition, JUnit 5 offers many useful new features. Only the features you use will be imported, you can use multiple extensions, and you can even create your own custom extensions. Together with the new features, these changes provide a powerful and flexible update to the JUnit framework.

From the blog haorusong by Unknown and used with permission of the author. All other rights reserved by the author.

differences and benefits between JUnit 4 to JUnit 5:

https://www.baeldung.com/junit-5-migration

According to this blog what I study for the Junit 4 and Junit5:

JUnit 5 is a powerful and flexible update to the JUnit framework, providing various improvements and new capabilities to organize and describe test cases and to help understand test results. Upgrade to JUnit 5 is quick and easy: Just update your project dependencies and start using the new functionality.

JUnit 4 bundles everything into a single JAR file.

JUnit 5 consists of three sub-projects, namely JUnit Platform, JUnit Jupiter, and JUnit Vintage.

1. JUnit platform

It defines TestEngine’s API for developing new testing frameworks that run on the platform.

2.JUnit Jupiter

It has all the new JUnit annotations and TestEngine implementations to run tests written with those annotations.

3.JUnit Vintage

Support for running tests written by JUnit 3 and JUnit 4 on the JUnit 5 platform.

But here are four strong reasons to start writing new test cases with JUnit 5:

JUnit 5 takes advantage of features from Java 8 or later, such as lambda functions, to make tests more powerful and easier to maintain.

JUnit 5 adds some very useful new capabilities for describing, organizing, and executing tests. For example, tests get better display names and can be organized hierarchically.

JUnit 5 is organized into multiple libraries, so import only the functionality you need into your project. With build systems like Maven and Gradle, it’s easy to include the right libraries.

JUnit 5 can use multiple extensions at the same time, something that JUnit 4 cannot do (you can only use one runner at a time). This means that you can easily combine Spring extensions with other extensions, such as your own custom extensions.

The JUnit 5 tests look pretty much the same as the JUnit 4 tests, but there are a few differences you should be aware of.

The import. JUnit 5 uses the new org.junit.jupiter package. . For example, org. Junit. Junit Test into org. Junit. Jupiter. API. Test.

Annotation. The @Test annotation no longer has arguments; each argument is moved to a function.

Assertions. JUnit Assertions 5 now in org. JUnit. Jupiter. API. Assertions. Most common assertions, such as assertEquals() and assertNotNull(), look the same as before, but with a few differences.

The hypothesis. Assumption has been moved to org. Junit. Jupiter. API. Assumptions.

In summary, JUnit 5’s tests are more powerful and easier to maintain. In addition, JUnit 5 offers many useful new features. Only the features you use will be imported, you can use multiple extensions, and you can even create your own custom extensions. Together with the new features, these changes provide a powerful and flexible update to the JUnit framework.

From the blog haorusong by Unknown and used with permission of the author. All other rights reserved by the author.

Blog Post #1 JUnit 5 Testing

In class, we have been learning about testing with Junit 5 and doing assignments related to it. After watching the video for the advanced part of the assignment,  I decided that I wanted to research further into the topic for my first blog post. So, what is Junit? In a short answer, JUnit is a Java open sources unit testing framework that is used to write and run repeatable automated tests. JUnit 5 Is the updated version of the highly popular testing library that is Junit 4 which I’m sure you all have heard of it. Junit 5 was released in 2017 that adds good use for Java 8 features. In fact, JUnit 5 requires Java 8 JDK or higher to work.

While researching a few of the key differences between the two versions are Junit 5 is composed of 3 sub-projects JUnit Platform, JUnit Jupiter, and JUnit Vintage. The Assertions and Annotations have been changed, and most importantly Junit 5 adds the support of the lambda expression in which we went over in class. One of the blogs I read recommends doing this example,  which I found quite helpful and easy to understand. The code below is just a conversion between Fahrenheit to Celsius and Junit to test it. The author breaks each part down into subsections which made It easier to follow along. I was also, curious about how Junit 5 worked in the Gradle so I followed tutorials to see how the build systems provide supports to the new feature. I highly recommend watching the video that I have provided; it explains everything you need to know about Junit 5 and the architecture behind It.

 

Resources: 

https://www.youtube.com/watch?v=flpmSXVTqBI 

https://www.parasoft.com/junit-tutorial-setting-up-writing-and-running-java-unit-tests/

From the blog Derin's CS Journey by and used with permission of the author. All other rights reserved by the author.