Category Archives: CS-343

UML Diagram Designing

When it comes to programming and building a program, we need to first sometimes implement a diagram to give others an overview of the said program. I chose this blog because it contains many types of articles based upon various types of diagrams which also include detailed information about UML diagrams. I chose to pick this topic because as a software developer, when working on project on teams it helps specify different parts of the diagram to divide up the work and make the connections to make sure it builds appropriately to determine the structure.

Why Use UML?

UML stands for “Unified Modified Language”, which can be the blueprint in the world of architecture designed to make software architecture more visual to help other software developer understand how everything is implemented. There are two types of Diagrams, Structural UML diagrams, and Behavioral UML diagrams. Useful for every type of occasion such as databases. In the example below, we have a simple diagram, each main category are the classes. Each class contains. attributes and methods that are assigned to their own classes such as public, private, protected, etc. also displays the data type associated with the methods. Relationships are the connections between objects made with other classes, we have different type such associations, inheritance, aggregation, implementation, etc. Animal listed as the super class and the specific animals are the subclasses, the arrows are the inheritance relationship from the super class. 

UML Class Diagrams Tutorial, Step by Step | by Salma | Medium

After what I have learned about UML diagram designing, I have a small amount of experience prior thanks to taking the database course. But the further we progress in the course I can have a clear perspective on how go about it and how to make one when it is needed to make programming and others much is simpler. UML could have been useful during my intro to programming class because when we draw something on a piece of paper to fully see the classes, methods, objects, data types, etc. we could make programming and the connection made. This benefit will help all developed communicate effective but examining the appropriate connections, even though if may have some conflicts when it comes to the code writing phase and readjust the diagram accordingly. I have provided links before to further give more insights about how to go about using and making UML diagram and the purpose on why it is a crucial part of the software development process.

Links:

http://blog.genmymodel.com/what-you-need-to-know-about-uml-diagrams-structure-diagrams-1.html

https://www.genmymodel.com

https://www.geeksforgeeks.org/unified-modeling-language-uml-introduction/

From the blog cs@worcester – Dahwal Dev by Dahwal Charles and used with permission of the author. All other rights reserved by the author.

REST APIs

Summary:

This article helps us understand how to be able to read APIs and use them effectively by teaching us what we need to know about REST APIs. They go over The anatomy of an API request, Testing Endpoints with cURL, JSON, Authentication, and API versions. After reading this article we should be able to learn how to use cURL to perform request with GET, POST, PUT, PATCH, and delete. As well as that we should get a grasp on how to authenticate our requests with the -u option and what HTTP statuses mean.

Reason:

The reason behind choosing this article is because in class we just recently started learning about APIs and I think it is one of the most important real world skills we need in order to be a software engineer.

What I learned:

An API is an application programming interface. It is a set of rules that allow programs to talk to each other. The developer creates the API on the server and allows the client to talk to it. REST stands for “Representational State Transfer”. It is a set of rules that developers follow when they create their API. One of these rules states that you should be able to get a piece of data when you link to a specific URL. In the anatomy of a request, you have the endpoint, the mother, the headers, and the data (or body). The endpoint (or route) is the url you request for. The method is the type of request you send to the server and you can choose from GET, POST, PUT, PATCH, and DELETE. These methods provide meaning for the request you’re making. They are used to perform four possible actions: Create, Read, Update and Delete. Headers are used to provide information to both the client and server. It can be used for many purposes, such as authentication and providing information about the body content. The data contains information you want to be sent to the server. This option is only used with POST, PUT, PATCH or DELETE requests. JSON also known as JavaScript Object Notation is a common format for sending and requesting data through a REST API. On the web there are two main ways to authenticate yourself and that is with a username and password but also with a secret token. Developers update their APIs from time to time. Sometimes, the API can change so much that the developer decides to upgrade their API to another version. If this happens, and your application breaks, it’s usually because you’ve written code for an older API, but your request points to the newer API. You can request API version in two ways, and that is directly in the endpoint or in a request header.

From the blog CS@Worcester – Life as a CS Student by Dylan Nguyen and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this blog after looking over some class activities again and seeing any questions to review, but something caught my attention. I read the word “microservices” in some class-work exercises; I got interested and looked it up again. I found two links that helped me understand What are microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an architectural method that structures an application as a collection of services that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier to scale and faster to develop, enabling innovation and accelerating time-to-market for new features to reduce complex applications. It even allows an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has several problems. Moreover, when using this architecture, many issues must address.

The microservice architecture pattern language is a set of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a microservices architecture can be developed, deployed, operated, and scaled without affecting the functioning of other benefits. Services don’t need to share any code or implementation with other services. Any connection between individual components happens through APIs. 
  • Specialized – Each service is designed for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and independent teams that take ownership of their services. Groups work in a small and well-understood context and are allowed to work independently and fast. It helps to shorten construction cycle times. It benefits significantly from the throughput of the organization.
  • Flexible Scaling – Each service is to be independently scaled to meet the demand for its support application. It enables teams to support requirements, precisely measure the cost of a feature, and manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination and delivery, helps try out new ideas, and rolls back if something doesn’t work. The low cost of failure enables experimentation to update code and stimulates time-to-market for new features.
  • Technological Freedom – It doesn’t follow a “one size fits all” plan. Teams have chosen the best tool to solve specific problems.
  • Reusable Code – Dividing software into small modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an application’s stand to failure. With microservices, applications handle complete service failure by discrediting functionality and not crashing the entire application.

From the blog Andrew Lam’s little blog by and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-7

Hello, I want to write this
blog after looking over some class activities again and seeing any questions to
review, but something caught my attention. I read the word
“microservices” in some class-work exercises; I got interested and
looked it up again. I found two links that helped me understand What are
microservices? And examples from Amazon company.

 

What are microservices? 

Microservices (microservice architecture) – is an
architectural method that structures an application as a collection of services
that are

  • Highly maintainable and testable
  • Loosely linked 
  • Individually deployable
  • Organized around business capabilities
  • Owned by a small team

The microservice architecture makes applications easier
to scale and faster to develop, enabling innovation and accelerating
time-to-market for new features to reduce complex applications. It even allows
an organization to evolve its technology stack.

The pattern language guide 

The microservice architecture isn’t perfect; It has
several problems. Moreover, when using this architecture, many issues must
address.

The microservice architecture pattern language is a set
of patterns for applying the microservice architecture. It has two goals:

  • The pattern language allows whether microservices are a good place for application.
  • The pattern language allows the microservice
    architecture favorably.

Characteristics of Microservices

  • Autonomous – Each element set in a
    microservices architecture can be developed, deployed, operated, and scaled
    without affecting the functioning of other benefits. Services don’t need to
    share any code or implementation with other services. Any connection between
    individual components happens through APIs. 
  • Specialized – Each service is designed
    for a collection of capabilities and focuses on solving a specific problem. 

Benefits of Microservices

  • Agility – promote an organization of small and
    independent teams that take ownership of their services. Groups work in a small
    and well-understood context and are allowed to work independently and fast. It
    helps to shorten construction cycle times. It benefits significantly from the
    throughput of the organization.
  • Flexible Scaling – Each service is to be
    independently scaled to meet the demand for its support application. It enables
    teams to support requirements, precisely measure the cost of a feature, and
    manage availability if a service experiences a spike in demand.
  • Easy Deployment – Enable continuous combination
    and delivery, helps try out new ideas, and rolls back if something doesn’t work.
    The low cost of failure enables experimentation to update code and stimulates
    time-to-market for new features.
  • Technological Freedom – It doesn’t follow a
    “one size fits all” plan. Teams have chosen the best tool to solve
    specific problems.
  • Reusable Code – Dividing software into small
    modules, which enables teams to use functions for multiple purposes.
  • Resilience – Service independence increases an
    application’s stand to failure. With microservices, applications handle
    complete service failure by discrediting functionality and not crashing the
    entire application.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.