SOLID is an acronym that stands for the 5 different principles that help write high-quality, maintainable, and scalable code. These include Single Responsibility Principle (SRP), Open-Closed Principle (OCP), Liskov Substitution Principle (LSP), Interface Segregation Principle (ISP) and Dependency Inversion Principle (DIP). Each provides their own benefits and work in tandem together when designing a program.
SRP states that a class should only have one responsibility, meaning only one reason to change. This helps prevent a class from having too many responsibilities that can affect each other when one is changed. Following SRP ensures that the code will be easier to comprehend and prone to fewer errors. However, it is harder than it sounds to fulfill this principle. The quickest solution to adding a new method or functionality would be to add it to existing code, but this could lead to trouble down the road when trying to maintain the code.
OCP states that software classes, modules, functions, etc. should be open for extension but closed for modification. This is essential because it allows entities to be extended without modification so that developers can add new functionality without risking the chance of breaking the code. Adding an additional level of abstraction with the use of interfaces help design the program to provide loose coupling.
LSP states that any instance of a derived class should be substitutable for an instance of its base class without affecting the program in a harmful way. The importance of this principle revolves around the ability to ensure the behavior of the program remains consistent and predictable. Unfortunately, there is no easy way to enforce this principle, so the user must add their own test cases for the objects of each subclass to ensure that the code does not significantly change the functionality.
ISP focuses on designing interfaces that are specific to a user’s needs. Instead of creating a large interface that covers all methods, it is more beneficial to split up the methods across smaller, more focused interfaces that are less coupled. For example, having too many methods in an interface can sometimes cause issues in the code, so separating the methods into individual interfaces that can be implemented by a certain class.
DIP states that high-level modules should not depend on lower-level modules but should depend on abstractions. This approach aims to reduce coupling between modules, increase modularity, and make the code easier to maintain, test, and extend. An important thing to note is that both high-level and low-level modules depend on abstractions. Dependency Inversion utilizes the SOLID principles which in turn leads to a more refined and maintainable code.
This is related to the class subject in many ways because it works as a guideline to write the most convenient code for programmers to maintain. Testing the aforementioned code is a simpler process when abiding to the SOLID principles as well. It also allows for easy scalability, making it essential for large code sets that evolve and become more complex over time.
SOLID Design Principles: The Single Responsibility Explained (stackify.com)
From the blog CS@Worcester – Jason Lee Computer Science Blog by jlee3811 and used with permission of the author. All other rights reserved by the author.