Category Archives: CS-343

Understanding More About APIs

In the second half of the semester we began working with the API code for the Worcester State food pantry project. As I worked with the API code, I never really took the time to gain a deeper understanding of how APIs work and I wanted to explore that as I wrap up my final assignments. I found this video explaining the basics of Web APIs to be very helpful and fill in gaps I had in my understanding of the topic. 

API stands for application programming interface and web APIst provide mechanisms users can use and interact with where the workings of that mechanism are hidden to the user. The video gave a great example of a way to visualize how APIs work: when you enter an elevator you have a set of buttons that take you where you want to go, but you don’t see or know exactly how it does it. Web APIs are the medium between the client (user) and the server (the web servers). HTTP protocol (HyperText Transfer Protocol) is used to transfer data through the web. Every link on your web browser is in HTTP form with a path and parameters or query – for example, I am editing this in google docs and my browser is in the form of docs.google.com/document/d/encryption/edit. Servers offer responses in various different codes such as 200 (success), 400 (client error), or 500 (server error). The information that is sent over can be in two different formats: XML or JSON. They have different formats but the same function of transferring data. 

JSON is the standard for APIs because most programs are using javascript and it provides easy integration. Many modern APIs use the REST architecture (Representational State). REST APIs use an end point just like the HTTP path and the method, which defines what kind of action is being performed (GET, POST, DELETE). Headers contain information about the type of request and the body is the JSON object. API requests have four parts: The end point (the path), the method (which HTP call is being made), the header which contains additional information, and the body (the message or data that is being sent). 

This video did not mention YAML files and that was part of the API system I was still struggling to understand, and came across a great breakdown:

https://idratherbewriting.com/learnapidoc/pubapis_yaml.html

The food pantry API code is made up of many different YAML files. YAML is similar to mark up languages but it removes all the brackets and other syntax making it easier and faster to read. YAML and JSON are related, making the two easy to integrate. YAML file syntax uses indentation to denote different levels and each different level is an object with dashes indicating variables. JSON uses quotation marks and brackets whereas YAML uses dashes and semicolons.

From the blog CS@Worcester – Site Title by lenagviaz and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-15

Hello, blog (mood-status: relax), writing this blog after coming home from work, finishing the exams, and submitting assignments. But anyway, on writing about this week-15. I am writing this as my “final” blog for the year 2021 for real. I decided to go on the Syllabus once again to look at the course topics. Then I choose the subject of the Patterns & anti-patterns.

 

Patterns

Patterns are part of everyday language, but it’s essential to discuss algorithms to understand their importance in software engineering. An algorithm performs a daily task like sorting a list of items, storing data for efficient retrieval, or counting occurrences of an object within a data set.

 Algorithms are among the most used fundamental concepts in software engineering. It mainly highlights proofs of its solutions and its only code samples in obscure, ancient languages such as Algol or MIX Assembly. Despite much covered: singly- and double-linked lists, trees, garbage collection, etc. The details are hiding in problematic libraries, but the concepts are the same. These algorithms have remained reasonable solutions to common software engineering problems for more than five decades and are still going strong.

A “pattern” can be a general structure of an algorithm. In algorithm focus on a specific programming task, a pattern challenges beyond that domain and areas such as reducing defect rates, increasing code maintainability or allowing large teams to work more effectively together. Some standard practices include:

  • Factories
  • Pub/Sub
  • Public-key Cryptography
  • Agile

 

These are four common patterns in the industry; it ranges from highly technical to broader, more process-oriented points. Factories are very code-oriented, while pub/sub is more architectural. While public-key cryptography has general importance, libraries to support its operations are available for almost every programming language in everyday use, making it generally short of implementation.

At the other end of the expanse, “Agile” remains unavailable: a point and a tool among developers, project managers, and other stakeholders about precisely what it means and how it should be implemented. From Narrow or broad, technical or process-oriented, excellent working knowledge of these patterns is an essential component in a technologist’s toolbox.

 

What is an Anti-Pattern?

A “pattern” is a known-to-work solution to a common software engineering problem (anti-pattern). Anti-patterns do not incorporate the idea of failure to do the right thing, including options that seem right at face value but direct to trouble in the long run.

Note the reference to “a common response.” Anti-patterns are not a few mistakes; they are familiar and always followed with good choices. As with regular patterns, anti-patterns can be broad or very specific, and there may be hundreds to consider in the realms of programming languages and frameworks.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.