Category Archives: Quarter-2

Blog Entry: Duck Simulator

Summary of the Resource

The resource I explored is the Duck Simulator project from the article “Design Patterns: The Strategy Pattern in Duck Simulations” by Head First Design Patterns (https://www.oreilly.com/library/view/head-first-design/0596007124/ch06.html). The simulator features different types of ducks like Mallard, Redhead, and Rubber ducks with behaviours such as flying and quacking. What’s particularly interesting is that these behaviours aren’t hard-coded into the duck classes; instead, they can be assigned or changed dynamically at runtime. This design highlights important object-oriented programming concepts, including polymorphism, encapsulation, and code reusability. It also demonstrates how the strategy design pattern allows developers to build flexible, scalable, and maintainable programs. The simulation is not only educational but also fun, giving a visual and interactive way to understand abstract programming concepts.

Why I Chose This Resource

I chose the Duck Simulator because it is a hands-on, practical example that clearly demonstrates OOP principles we are currently learning in class. I was looking for a resource that is engaging, easy to follow, and yet illustrates advanced programming concepts like abstraction, interfaces, and composition. The simulator is particularly appealing because it shows how separating behaviours from the main duck classes makes it easy to add new features or modify existing ones without rewriting the core code. This approach mirrors how professional software projects are structured, and I wanted to see an example that connects what we learn in theory to practical programming.

What I Learned and Reflected On

Working through the Duck Simulator helped me understand how to design flexible and maintainable code. Previously, I often relied on inheritance to share behaviours, but this project demonstrated how composition provides more adaptability and control. For example, I could give a Mallard duck a “fly with rocket” behaviour without touching the original class—something that would have been difficult or messy using only inheritance.

The project also helped me see the value of modular thinking, treating behaviours as separate, reusable components that can be mixed and matched across objects. This makes it much simpler to extend the program, add new duck types, or implement additional actions. Experimenting with the simulation gave me a tangible way to understand polymorphism and modular design, which made abstract class concepts from lectures much easier to grasp. It also reinforced the idea that writing clean, reusable code is as important as writing code that just works.

How I’ll Use This in the Future

In my future projects, I plan to apply the lessons from the Duck Simulator by designing programs in which behaviours can be swapped, updated, or extended independently of the main code. This will be especially useful in games, simulations, or any software where features may change over time. The project reinforced the importance of thinking ahead about software structure and planning for flexibility, rather than just focusing on making the code functional. Overall, the Duck Simulator showed me that good software design is a skill that complements programming ability, and it’s something I will carry forward in both my academic and professional projects.

From the blog CS@Worcester – Site Title by Yousef Hassan and used with permission of the author. All other rights reserved by the author.

Team management in software development

As a software developer there is a significant chance that you will develop software in a team environment. I know as an entry level developer gaining this experience beforehand would be a massive boost for my career but what exactly does team management entail?

The importance of team management

In a perfect world a team of developers all work perfectly together synchronously & complete a task in the best way possible. In reality, each team will have people of different skillsets, creativity, and ideas for development. Therefore, teams need to be managed in order to optimize development as much as possible.

Diagram illustrating the roles within a software project development team.

Creating a team

Before assembling a team for a project its important to highlight the scope & needs in order to figure out how many, and the type of, developers. According to itrex, some examples of developers you may need would be:

– Software Developer: Engineers and stabilizes the product & solves any technical problems emerging during the development lifecycle
– Software Architect:
Designs a high-level software architecture, selects appropriate tools and platforms to implement the product vision, & sets up code quality standards and performs code reviews
– UI/UX Developer:
Transforms a product vision into user-friendly designs & creates user journeys for the best user experience and highest conversion rates
– QA(quality assurance) Engineer:
Makes sure an application performs according to requirements & spots functional and non-functional defects
-Test Automation Engineer: Designs a test automation ecosystem & writes and maintains test scripts for automated testing
– DevOps Engineer: Facilitates cooperation between development and operations teams & builds continuous integration and continuous delivery (CI/CD) pipelines for faster delivery
– Business Analyst: Understands customers business processes and translates business needs to requirements.
– Project Manager: Makes sure a product or its part is delivered on time and within budget & manages and motivates the software development team
– Project Owner: Holds responsibility for a product vision and evolution & makes sure the final product meets customer requirements

Infographic illustrating the challenges of managing software development teams, including communication, role clarity, and meeting deadlines.

Post-team assembly

Depending on your project you now have an idea on what team you have, the next step is actually managing them. This entails setting clear objectives/goals, creating a timeline, allocating resources, setting communication strategies, delegating, implementing, tracking progress, monitoring project, managing risks/challenges & maintaining flexibility.

Overview of a project manager’s essential roles and responsibilities in software development.

Final thoughts

I now have a better understanding the importance of team management in software development. In order to maximize efficiency towards a project/goal you definitely need to manage a significant amount of aspects related to development. The ability for a team to work together is also valuable & must be taken into account. Overall, I really enjoyed researching this topic, the main sources I used in my research was this section in Atlassians website as well as this section in the itrexgroup website.

From the blog Petraq Mele blog posts by Petraq Mele and used with permission of the author. All other rights reserved by the author.

Git bisect

In our class, in our latest POGIL we’ve started to explore debugging, an essential skill that uses different tests, tools, and commands.. The blog post “Supercharge Your Debugging with Git Bisect” by Phil Haack is a blog that talks about debugging with a tool that we’ve just started to familiarize ourselves with. That being git bisect, a command that helps developers locate the specific commit where a bug first appears. I chose this post because I was curious about how this tool can change debugging for me as a developer, as well as the idea of pinpointing where a bug starts in version control.

The post opens with a relatable story about the author facing a bug that had crept into his project over time. Instead of resorting to endlessly going through each commit and running tests, he turned to git bisect to efficiently find the problem. Haack explains how the command works like a binary search. It starts by marking a known commit where the bug exists and a known commit where the program worked correctly. Git then checks out a commit halfway between those two points. After testing that commit, the developer marks it as good or bad, and Git automatically cuts the range of possible culprits down until it pinpoints the exact commit where the issue began. Haack further elaborates on advanced features such as skipping commits that can’t be tested and automating the process with scripts through git bisect run. He also notes potential complications, like when the first bad commit is a merge rather than a single code change, which can make debugging a bit more complicated.

I chose this article because debugging is one my worst and most frustrating aspects of coding, and git bisect offers an easier approach that turns guessing into a faster, more efficient search. While I’ve used Git regularly for version control, I only recently realized it could actively help in finding bugs. The examples given in the blog made it easy to understand how bisecting commits can save on time, especially in large projects with long histories.

Reading this blog gave me new ideas about debugging. I’ve always viewed Git as a way to manage versions, especially when working with others, but now I see it as a debugging tool as well. The concept of using binary search to isolate problems makes me think about what other commands can be used to enhance my time when coding. It’s also a heads up that effective debugging depends on maintaining small, manageable commits because without manageable commits, even Git Bisect can struggle to pinpoint a specific change. Hopefully I can incorporate this tool into my workflow whenever I encounter bugs that I can’t find.

https://haacked.com/archive/2024/11/11/git-bisect/

From the blog CS@Worcester – Coding with Tai by Tai Nguyen and used with permission of the author. All other rights reserved by the author.

Bridging Structure and Flexibility: Understanding Software Design Methodologies and Agile

Hello everyone, and welcome to my blog entry for this week!For this week’s self-directed professional development, I explored the topic of Software Design Methodologies and Agile Practices. I used several online resources, including tutorials from Atlassian Agile Coach and readings from GeeksforGeeks. Even though the focus was on understanding Agile methodologies, I found that many of the ideas connected directly to our discussions in class about the software development life cycle (SDLC) and software design principles.

Summary of the Resource

Software design methodologies provide structured approaches to building and maintaining software systems. They define how development teams plan, design, implement, test, and deliver software. Traditional methodologies like the Waterfall Model, V-Model, and Spiral Model follow a sequential or plan-driven approach — where each stage must be completed before the next begins. These models emphasize documentation, predictability, and control.

On the other hand, Agile methodologies such as Scrum, Kanban, and Extreme Programming (XP) prioritize adaptability, collaboration, and continuous feedback. Agile breaks development into small iterations or “sprints,” allowing teams to quickly adjust to changes in requirements or user needs. Instead of rigidly following a plan, Agile embraces flexibility — delivering functional software early and improving it continuously.

The Agile Manifesto summarizes this philosophy in four values:

  • Individuals and interactions over processes and tools
  • Working software over comprehensive documentation
  • Customer collaboration over contract negotiation
  • Responding to change over following a plan

Why I Selected This Resource

I chose to focus on Agile methodologies because I wanted to understand how modern development teams manage complexity in real-world projects. We often hear about Agile in professional settings, but I wanted to explore why it has become so widely adopted. After learning about structured models like Waterfall, I was curious to see how Agile differs in terms of flexibility, teamwork, and iterative design.

This topic also connects closely to our class discussions on object-oriented design and project management, where adaptability and maintainability are key. Understanding these methodologies helps bridge the gap between theoretical design principles and practical implementation in team environments.

Personal Reflections: What I Learned and Connections to Class

Exploring Agile helped me see how methodology shapes not only the process but also the culture of software development. Here are a few takeaways that stood out to me:

  • Iteration mirrors refinement in design. Just like UML diagrams evolve as designs improve, Agile projects evolve through sprint cycles that incorporate feedback.
  • Communication is central. In Agile, daily stand-ups and retrospectives ensure the entire team stays aligned, similar to how collaboration in object-oriented design ensures consistent architecture.
  • Adaptability is a strength, not a weakness. While traditional models aim for stability, Agile embraces change — which is essential when building modern, user-driven applications.

In class, we often focus on designing systems that can evolve. Agile reinforces that same mindset at the project management level software design should anticipate growth, not resist it.

Application to Future Practice

Moving forward, I plan to apply Agile thinking to my future software projects, especially in group work or larger systems. Instead of trying to perfect a design from the start, I’ll focus on building incrementally, testing continuously, and welcoming feedback early in the process.

For example, in future programming projects, I could organize development into short milestones, use version control branches to represent sprints, and hold mini “retrospectives” after each stage. These habits will not only improve collaboration but also help me develop adaptable, high-quality code.

Citation / Link

Atlassian Agile Coach. “What is Agile?” Atlassian. Accessed October 2025. https://www.atlassian.com/agile
GeeksforGeeks. “Software Development Life Cycle (SDLC) and its Models.” 2025. https://www.geeksforgeeks.org

This exploration helped me connect the structured approaches of traditional methodologies with the flexibility and innovation of Agile. It reinforced that software design isn’t just about code — it’s about creating systems and processes that can evolve as technology and user needs change.

From the blog Rick’s Software Journal by RickDjouwe1 and used with permission of the author. All other rights reserved by the author.

From UML to Design Patterns: Refactoring the Duck Simulator

Hello everyone, welcome back to my blog! In my previous post, I explored object-oriented design basics and the importance of UML diagrams for understanding class relationships. This week, I applied that knowledge to a practical assignment by refactoring the Duck Simulator project using several design patterns, and I want to share what I learned from the process.

Introduction

UML diagrams provide a visual blueprint for software systems, helping developers understand relationships, dependencies, and responsibilities of different classes. While useful on their own, combining UML with design patterns allows us to translate those visual models into flexible, reusable, and maintainable code. In the Duck Simulator project, I used UML to identify repetitive behavior and then applied Strategy, Singleton, and Factory patterns to improve the system’s design.

Using UML to Identify Problems

Originally, the Duck Simulator consisted of an abstract Duck class and subclasses like MallardDuck, RedHeadDuck, RubberDuck, and DecoyDuck. Each duck implemented its own fly and quack methods. My UML class diagram made it clear that this design was repetitive: multiple subclasses had similar or identical behaviors. This repetition violates the DRY (Don’t Repeat Yourself) principle and makes the system harder to maintain or extend. The diagrams highlighted the exact areas where behavior abstraction could be applied, providing a clear roadmap for refactoring.

Applying the Strategy Pattern

The first refactor I implemented was the Strategy Pattern, which separates the fly and quack behaviors into FlyBehavior and QuackBehavior interfaces. Each duck is assigned a behavior object rather than hard-coding methods. Using UML, I could visualize how Duck classes now depend on behavior interfaces, not concrete implementations. For example, RubberDuck now uses the Squeak behavior, and DecoyDuck uses MuteQuack. This change made it easy to swap behaviors dynamically and reduced duplicated code across subclasses.

Using the Singleton Pattern

Next, I noticed that all ducks shared identical behaviors like FlyWithWings and Quack. To avoid creating multiple unnecessary instances, I applied the Singleton Pattern. UML helped illustrate that each behavior class has a static instance and a getInstance() method. This ensured that ducks reused the same behavior object, saving memory and improving consistency.

Implementing the Simple Factory Pattern

Finally, I created a DuckFactory to centralize the creation of ducks with their associated behaviors. UML shows a clear dependency from the simulator to the factory, encapsulating construction logic and removing manual behavior assignments in the simulator. This simplified code maintenance and improved readability, while maintaining all Strategy and Singleton benefits.

Reflection

This assignment reinforced how UML and design patterns complement each other. The diagrams helped me see problems in the design, and patterns provided proven solutions. After completing the refactor, the Duck Simulator is now modular, maintainable, and extensible. I can confidently add new duck types or behaviors without touching existing code. Personally, I learned that UML isn’t just documentation, it’s a tool that guides better design and code structure.

Resources

While exploring this assignment, I also reviewed a great resource that breaks down the concepts from Head First Design Patterns in a clear and structured way. You can find it here on GitHub. It helped me connect UML representations with real-world code implementations, especially when applying the Strategy Pattern in my Duck Simulator project.

From the blog CS@Worcester – Rick’s Software Journal by RickDjouwe1 and used with permission of the author. All other rights reserved by the author.

An Introduction into REST API

The topic for this blog post was REST API. I chose this topic because later on in the semester we will be going over REST API design and I wanted to get a firm understanding of what REST APIs are first. I watched the video linked below, which is titled “REST API Crash Course”, in which the first half of the video was defining and explaining what a REST API is and then the second half was how to implement REST APIs in your code. https://www.youtube.com/watch?v=qbLc5a9jdXo

To begin, what exactly is a “REST API.” It stands for Representational State Transfer Application Programming Interface. The REST part is a set of rules and guidelines about how you should build a web API. The API part is another set of rules and guidelines about how applications communicate with one another. 

In essence REST APIs are a way for two softwares to communicate with one another.  No two softwares are built the same and have their own factors and variables. For instance, if you have one application coded in Python and another application coded in JavaScript and wanted them to communicate to one another… they would not be able to due to the fact they are in different languages. This is where REST APIs come in which enables a pathway for communication between the two different applications. 

We can further expand on this by using client-server communication example. The server exposes an endpoint API → client makes a request to the endpoint API of the server→ the server processes the request → once processed, the server sends it back to the client in a JSON format. 

It should be noted the client should NOT go directly to a database. If a client to database connection did occur, it would not be good due to the fact the database info would be exposed; which could lead to corruption and information getting exposed inside of the database. With an API, the client does not receive database credentials, limited with permissions to the extent of the API, and the server always retains the real database credentials. Long story short, with an API the information stays hidden. 

There are four main methods of requesting data from the server:

-GET is used to retrieve information from the server.

-POST is used to write information to the server; add a resource.

-PUT is used to update/replace a resource on the server.

-DELETE is used to remove a resource from the server. 

Learning about REST APIs and APIs in general makes me feel a lot more comfortable when we do get to the point of our semester of REST API design. Furthermore, it’s all starting to come together in terms of software construction. Starting with design then going to a better structured scalable design, addressing the relationships of servers and clients in class and soon REST API design, very cool, looking forward to it!

From the blog CS@Worcester – Programming with Santiago by Santiago Donadio and used with permission of the author. All other rights reserved by the author.