Category Archives: Software Development

Speed Over Design

The following blog I would like to talk about is called “The Hidden Cost of Speed” by Brayden H. Hord. He begins with a quick story about a project he worked on. In this story he describes how he, in an attempt to impress his bosses and meet his co-workers needs, pushed out a product as fast as possible. This worked for the moment. His bosses were happy and he continued his work. However months later, bugs and issues are arriving daily. The software he quickly developed was being used on a daily basis, something he had not anticipated. Now all the shortcuts he had taken earlier had come back to bite him. Now he had something that was being used extensively that was built poorly. 

Now he and his team had to work laboriously to try to fix these fundamental issues. Fixing the problems but also trying to interface between management and stakeholders. The truth is that these problems could have been avoided. If he had better planned and took more time to access the needs and requirements of the project. The moral of the story is that taking time to build right saves headaches down the line. The rest of the blog goes into more detail about why planning and communication are fundamental for all software developers. 

The reason I choose this blog is because I think it highlights one of the most important factors when it comes to software development, Communication. Most software is not built by one person, but rather a team of people. What makes a good team is communication, making sure everyone is on the same page. I think this is important to remember because building without a plan is a recipe for failure. It’s easy to get excited and try to push something that works. But something built on shoddy foundations is always destined to fall. 

Sure your code may work at the moment, but somewhere down the line issues will arise. As needs and more complex architecture is needed, the holes in the code will rear their ugly head. That’s why building code that takes into account not only the needs of now, but also the needs of the future. Building architecture that makes life easier in the future, not harder. I think that this is an important lesson for any software developer to know. Because building something right not only makes your life easier, but everyone else on the team’s lives easier as well.

From the blog CS@Worcester – Code Craft by Kyle Tucker and used with permission of the author. All other rights reserved by the author.

Understanding SOLID Principles: A Guide 

As a student learning software design, I’ve come across the SOLID principles in a few lectures, but I wanted a deeper dive to really understand how to apply them. I recently read a blog post titled “SOLID Principles — The Definitive Guide” by Midhun Vincent on Medium. This guide breaks down each of the five SOLID principles in a straightforward way, with examples and explanations that actually make sense for someone still new to object-oriented design. The article is totally in line with what we’re covering in my course, so I figured it was a great chance to see how these principles could improve my coding style now and in the future.

Summary of the Selected Resource

The article explains the SOLID principles, which are five key guidelines for designing object-oriented software that is easier to understand, extend, and maintain. The first principle, the Single Responsibility Principle (SRP), emphasizes that each class should focus on a single task, making the code simpler to maintain and update. Next is the Open/Closed Principle (OCP), which suggests that classes should be open for extension but closed for modification, allowing developers to add new features without altering the original code structure. The Liskov Substitution Principle (LSP)follows, which ensures that objects of a superclass can be replaced with objects of subclasses without causing issues in the application. Then there’s the Interface Segregation Principle (ISP), which advises against creating large, general-purpose interfaces and instead encourages smaller, more specific ones that suit the exact needs of different clients. Finally, the Dependency Inversion Principle (DIP) recommends that high-level modules should not rely on low-level modules but rather on abstractions, which reduces dependency and enhances flexibility. Together, these principles form a strong foundation for writing clean, modular code that can handle future changes more gracefully.

Why I Chose This Resource

I chose this post because the SOLID principles are really useful in building better code but can feel abstract at first. The article breaks down each principle in a way that makes them feel practical and achievable. Also, the examples in the post connect well with coding challenges we’ve faced in our course projects, especially in terms of keeping code organized and easy to debug. Seeing how SOLID principles can prevent code from becoming a tangled mess gave me a new perspective on how I approach my own assignments.

My Takeaways and Reflection

Before reading this post, I understood the theory behind the SOLID principles but not really how to implement them in my own code. Now, I can see why each principle matters and how they can actually save time by reducing the need for debugging and refactoring down the line. The Single Responsibility Principle, for example, made me think about how I often give one class way too many jobs, which then makes fixing issues complicated. By applying SRP, I can keep my classes simpler and less error-prone.

Moving forward, I’m planning to use these principles as I work on my projects, especially with the Open/Closed Principle and the Interface Segregation Principle. I can see how they’ll help me write code that’s easier to adapt if requirements change or if I add new features later. In the future, I think understanding SOLID will give me a solid foundation (pun intended!) as I move into more complex software development work.

https://medium.com/android-news/solid-principles-the-definitive-guide-75e30a284dea

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Design Patterns

Design patterns are essential tools for software developers, providing standardized, reusable solutions to common coding challenges. Rather than developing unique solutions every time a familiar problem arises, developers use these templates to write organized, efficient, and adaptable code. Design patterns are not complete blocks of code but instead serve as blueprints, guiding the structure of code in object-oriented programming and enhancing overall project organization.

according to the published article on GeeksForGeeks, the article mentions about A key advantage of design patterns which is reusability. Patterns can be applied across different projects, which saves time and effort by eliminating the need to repeatedly solve similar issues. This flexibility also allows developers to apply patterns quickly in various scenarios, accelerating development. Another benefit is standardization; design patterns create a common vocabulary among developers, which simplifies communication and collaboration within a team. By recognizing these patterns, all team members can quickly understand and follow the structure of the codebase.

Design patterns further promote efficiency by offering solutions that have been tested and refined over time. Since developers do not need to invent new solutions for frequently encountered problems, they can progress faster with fewer errors. Additionally, design patterns are designed to be flexible. They are adaptable templates, meaning they can be customized to fit specific project needs, making them a versatile tool for a variety of applications.

Types of Design Patterns

Design patterns fall into three main categories: Creational, Structural, and Behavioral.

  1. Creational Patterns focus on managing object creation to keep systems flexible and independent of object-specific creation logic. Examples include:
    • Factory Method: Allows creation of objects without specifying the exact class.
    • Singleton: Ensures only one instance of a class exists globally.
    • Builder: Breaks down complex object construction into simpler steps.
  2. Structural Patterns emphasize organizing classes and objects to create efficient, larger structures. Examples include:
    • Adapter: Enables incompatible classes to work together by adjusting their interfaces.
    • Facade: Simplifies complex systems by providing a unified interface.
    • Decorator: Adds extra functionality to objects without altering other instances.
  3. Behavioral Patterns focus on defining how classes and objects interact within a system, streamlining communication in complex applications.

In summary, design patterns help developers produce clear, maintainable, and scalable code. By adopting these patterns, developers can approach recurring problems with reliable solutions, improving collaboration, reducing development time, and creating codebases that are easy to expand and adapt. In the fast-paced world of software development, design patterns serve as a stable foundation for building robust, flexible applications

Reference: https://www.geeksforgeeks.org/software-design-patterns/

From the blog CS@Worcester – The Bits & Bytes Universe by skarkonan and used with permission of the author. All other rights reserved by the author.

What is Technical Debt

The Future you Problem

Photo by cottonbro studio on Pexels.com

Hello and welcome to a new week on this beautiful blog of mine. Today is a topic that is of interest to me and possibly everyone reading this. It could also be something you ran into during a coding project. It is called Technical debt, which is the concept of delaying or omitting work to complete a project but cause more work to do in the end. 

Let me give you an example that I have dealt with, and that you may have also dealt with. So you got a coding assignment to do right and that deadline is coming fast. So you set out to do it in the quickest and easiest way possible without a care for code layout or etiquette, it is just you working on it after all. The next day, you think to yourself that you may need to rework some facets of the code to make it run better or make it look neater. You then open up the project and look in horror at the mess you made and realize that it would take more time and effort to make it neater or run better than it would be to just continue on and get the project done. That is technical debt and yes it accrues interest.

The example was more personal and not that bad when you realize that the only price you paid is something you can’t stand to look at and also something that will take a long amount of time to fix. Like I said before it is just you working on it and as long as it works it’s fine…but what if you weren’t alone, say what if you were working in a team of 2 or 4 or perhaps a whole company amount. Then we have problems. Cause not only the debt is put upon others, but even money can be a problem if it is a company involved. 

There is also types of technical debt. Planned Technical Debt is meant to establish one presence in the market or gather feedback from customers, kinda like prototyping from my understanding. There is also Inadvertent Technical Debt when the developer is unsure of market requirements or aware of the architecture. 

Many things can cause technical debt to happen, such as poor management or the code not being reviewed well enough.  So to avoid such things it’s a good idea to 

  • Understand the Requirements
  • Understanding Decision Consequences
  • Supervising the Process

So be careful when coding a project as it may come to bite you in the future, so take into consideration the future you and help you out.

Be a Better Dev. (2020a, October 5). What is Technical Debt? (as a software developer). YouTube. https://youtu.be/2nDxKYIajoU?si=crpLGeoCewYZ_kEj

Eye on Tech. (2020b, October 7). What is Technical Debt and Why Does Tech Debt Matter?. YouTube. https://youtu.be/cdzUXv8SpjY?si=FHZ0Vl6ZVkhuSNeE

From the blog Debug Duck by debugducker and used with permission of the author. All other rights reserved by the author.

Week 18B – C Testing

For this week, I wanted to look at how different languages handle test cases, and I’ll continue with one I’m not the most familiar with, C! I’ve worked in small amount of C in classes at Worcester State, but have little experience outside of that. I feel like this is a good topic to discuss as knowing how other programming languages handle unit testing would be a great way to expand my knowledge when it comes to furthering my understanding of it within Java.

If you haven’t already read my other blog post on Python testing, feel free to read it right here!

For learning about unit testing in C, I consulted this article on the subject: https://interrupt.memfault.com/blog/unit-testing-basics

It seems like unit testing in C is a lot more barebones compared to Java, which in my experience utilizing C, makes sense for the language. A lot of features primarily used in Java, like object-oriented structures aren’t available in C (to my understanding, could totally be wrong).

For one major aspect, there seems to be only one assertion command in C, just simply “assert”. Theres no assertTrue, assertFalse, assertThrows, or assertEquals, just simply “assert”. And from the example given below:

#include <assert.h>

// In my_sum.c
int my_sum(int a, int b) {
  return a + b;
}

// In test_my_sum.c
int main(int argc, char *argv[]) {
  assert(2 == my_sum(1, 1));
  assert(-2 == my_sum(-1, -1));
  assert(0 == my_sum(0, 0));
  // ...
  return(0);
}

It seems the “assert” function comes from the <assert.h> library, much like the JUnit librarys used in Java. But more importantly, it seems that “assert” is the equivalent of “assertEquals”.

It also seems like Unit Testing in C is best implemented with tools outside of a compiler for C. The ones mentioned in the article in specific were CppUTest, Unity, and Google Test. For the rest of the article, the use examples using CppUTest. It was interesting to hear one of the options being called Unity, which is the name of a game engine, which, while not written in C, is written in a mixture of C# and C++, which are both offshoots of C. Makes me wonder how testing in a gaming engine works, perhaps it’s something to look at in a future blog post, hint hint, wink wink.

CppUTest seems to implement the same SetUp() and Teardown() functions that JUnit can employ, which is really good, as these methods are important for testing multiple methods. It also seems to have more then just an Equals assertion, even though the example used is another equals example.

This gets me more interested in C, as I have been told understanding C allows you to understand other languages much more clearly. Perhaps I’ll take a deeper dive some day, who knows! Until next time, my readers~!

From the blog CS@Worcester – You&#039;re Telling Me A Shrimp Wrote This Code?! by tempurashrimple and used with permission of the author. All other rights reserved by the author.

Behavior Driven Development

Behavior Driven Development ( BDD ) is a test practice that makes sure there is good quality by automating test before or during system behavior specification. BDD test focuses on facing scenarios that describe the behavior of a story, feature, or capability from a user’s perspective. When the tests are automated they make sure that the system constantly meets the required behavior.

The Behavior Driven Development Process

The BDD process has three phases to it. The discovery phase, formulation phase, and the automation phase.

1.) Discover phase: This phase is where the user creates the initial acceptance agenda for the feature. This phase is usually done in a collaborative manor, each team member is contributing.

2.) Formulation phase: This phase is where the acceptance agenda sets into detailed acceptance tests, as the backlog item gets closer to implementation. This phase also incorporates specific examples of the behavior.

3.) Automation phase: This phase is where automation tests are automated to run constantly. This is to make sure that the new system supports the new behavior.

Benefits of Behavior Driven Development

1.) Early detection of errors / defects: When you automate tests in the early stages of development process, you can identify and address the issues. BDD allows for the early detection of defects.

2.) Faster Flow and Time: when using BDD, you can reduce the errors, rework, and replan. BDD accelerates the flow of the development process. Developers can produce features / products faster and more efficiently.

3.) Stronger Test Coverage: BDD allows for a more comprehensive test coverage that focuses on the user behavior and scenarios. Both common and edge cases are tested as well.

4.) Clear understanding: BDD can be plain and clear to understand, because specific scenarios are used to describe the behavior from a user’s point of view. This helps the development to fully understand the requirements and whats going on.

Why I chose this resource

I chose this article ” Behavior Driven Development” because it provided a detail look of a very important test method that goes in conjunction with the technical and business aspect of testing. Understanding BDD is important in today’s society of software development, for giving an efficient and more user friendly user products.

Personal Reflection

This article increased my understanding of BDD and the use of it in software development. I learned a lot about how BDD strengthens collaboration and communication between the business side of things and the technical side of things. This helps to ensure that user’s expectations and requirements are met. The new found knowledge will be extremely valuable in my future endeavors because I will incorporate this method in my future projects. This will help to improve the development process and product efficiency and quality. Also, by using BDD I can make sure that all requirements and specifications are met.

The full article is here: https://scaledagileframework.com/behavior-driven-development/

From the blog CS@Worcester – In&#039;s and Out&#039;s of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Static Testing vs. Dynamic Testing

Testing in software development is important because it helps to deliver efficient and user friendly products to the end user. It also provides the developers with a chance to improve upon the product. Static and Dynamic testing are two important techniques used in software development.

Static Testing

Static Testing has various names like Verification Testing, Non-execution Testing, etc. This testing technique is used to identify defects in software without actually executing the code. This method usually includes manual and automated evaluation of the software and the code. Developers use this method usually in the beginning stages of the development process to catch issues early on, which will also lead to be easier and cheap to fix. This method focuses on reviewing the test cases, test scripts, test plans, and source code.

Static Testing Techniques

1.) Informal Reviews: Developers review each of the documents and give feedback

2.) Walkthroughs: Someone presents the product to the team and someone else takes notes.

3.) Technical Reviews / Code Reviews: review the technical specifications and the source code to make sure everything meets the requirements and standards.

4.) Inspection: Check for defects. Developers usually review the process with a checklist to help identify and record for defects.

Dynamic Testing

Dynamic Testing is a technique that analyzes the dynamic behavior of the code by actually executing it. This method makes sure to check that the software functions correctly and that there are no underlying issues / conditions. Sometimes developers use this method in conjunction with black box or white box testing to provide more realistic results.

Dynamic Testing Techniques

1.) White Box Testing: Examines the internal code structure. You need to actually have the internal code (source code)

2.) Black Box Testing: Checks the functionality without the actual internal code (source code) .

Benefits of both Static Testing and Dynamic Testing

1.) Early detection of defects

2.) Cost efficient

3.) Showcases runtime errors

4.) Reliability

Why I picked this Resource

I chose the article “Static Testing vs. Dynamic Testing” because this article gave me a more detailed and in depth look between two very important testing methods that are currently being used in todays society. It is very important to understand these two testing methods in the software development process because they can deliver efficient and user friendly products to the end user. This article also aligns with what we have learned in the course, making it relevant to talk about and to understand.

Personal Reflection

This article deepened my understanding of static and dynamic testing. I was able to learn a lot about these two testing methods that I did not know, even the many benefits that each method has. Knowing how crucial these two methods are in the software development process and what I know now, this knowledge will help me on my future endeavors when approaching new projects in regards to testing .

The full article is here: https://www.geeksforgeeks.org/difference-between-static-and-dynamic-testing/

From the blog CS@Worcester – In&#039;s and Out&#039;s of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Test Doubles

Test doubles are a very important tool in software testing. Test doubles allow for users to break off a portion of their code to test specific parts and functions. This helps because users can do this without depending on the other factors within their code. Test doubles are substitutes, they copy the behavior of real objects. This helps to make sure that the tests remain structured and efficient.

Overview of Test Doubles

For this blog post, I chose the Article “Test Doubles: Mocks, Stubs, and Fakes Explained” by Martin Fowler. The article talks a lot about the overview of the different types of test doubles, their roles, and how they can be used in testing.

Types of Test Doubles

1.) Dummy: A dummy object is required for the creation of another object required in the code. Dummy objects will never be used in the test, they are simply like place holders to satisfy the code and its requirements.

2.) Fake: A fake is an object that will always have the same return value. This object is useful for testing certain scenarios, like a user that is logged in or in a consistent database response. They are simple implementations that are not that suitable for production but are good for testing.

3.) Stub: A stub will provided predetermined responses to method calls. Stubs usually imitate the behavior of external components like databases or web services.

4.) Spy: A spy will record information about the interactions with the object being under tests. This helps verify interactions and make sure there is the correct behavior in method calls.

5.) Mock: A mock can be a more advanced test double that will allow for dynamic behavior based on the test scenario. They verify interactions and can change behavior based on conditions. They are useful for ensuring that certain methods are called with specific parameters during the test.

Benefits of Using a Test Double

1.) Early detection of errors/issues: Using Test Doubles will help the users to find any issues within the code. This helps with reducing the risk of defects in production

2.) Cost Efficiency: Using Test Doubles will significantly help to reduce the costs that will come with fixing the issues later in the development process.

Why I Picked this Resource

I chose this resource for the blog post because it provided an in depth overview of the various types of test doubles and their specific role within testing. This article’s contents had some similarities of what we discussed in the class, making it relevant and valuable.

Personal Reflection

This article not only increased my understanding on the topic of Test Doubles, but it also showed my how unique and important each one can be in regards to testing. I also learned the various benefits of these test doubles, so when I choose one in my future endeavors I will know which one will benefit me the most.

In my future endeavors, I plan on using what I have learned about these Test Doubles objects by implementing them on future projects. This new found knowledge will help me to make better decisions in the future and will also improve the quality of my work.

The full Article is here: https://ahmadgsufi.medium.com/test-doubles-understanding-the-different-types-and-their-role-in-testing-67cbf71ea252

From the blog CS@Worcester – In&#039;s and Out&#039;s of Software Testing by Jaylon Brodie and used with permission of the author. All other rights reserved by the author.

Elevating Code Reviews: Practical Tips for better Collaboration

Code reviews are a vital part of the software development process, serving as a checkpoint to ensure quality, foster knowledge sharing, and mitigate future issues. Drawing on practical advice from a stack overflow blog article (found here) this post explores how to elevate the practice of code reviews, enhancing their effectiveness and the collaborative environment they create.

Summary

The article from stack Overflow provided insightful tips on improving code reviews, emphasizing the importance of constructive communication and efficient processes. It suggest setting clear goals for reviews, such as catching bugs, ensuring consistency, and mentoring junior developers. Techniques like keeping comments clear and actionable, prioritizing empathy and understanding, and maintaining a balance between criticism and praise are highlighted as crucial for productive reviews.

Reason for selection

I chose this article because effective code reviews are essential for any development team aiming to produce high-quality software. As our coursework often involves collaborative projects and peer reviews, applying these enhanced practices can significantly benefit our collective learning and project outcomes.

Adding to the reasons for selecting this article, another compelling aspect is its relevance to the ongoing discussions in our software development courses about maintaining high standards in coding practices. As someone who has been part of several projects and observed firsthand the impact of well-conducted code reviews, I recognize the value in learning and sharing effective review techniques. This article not only enhances our understanding of best practices but also equips us with the tools to implement them effectively in our work, making it an invaluable resource for any aspiring software developer eager to improve their craft and contribute positively to team projects.

Personal reflection

Reflecting on the article, I appreciated the emphasis on empathy and clarity in communication. In past group projects, I’ve seen how negative feedback can demotivate peers, whereas constructive and positive communication can enhance team dynamics and improve code quality. This article reinforced the idea that code reviews are not just about finding errors but also about building a supportive team culture.

Application in future practice

Armed with these enhanced practices, I plan to apply the article’s recommendations in upcoming projects, particularly those involving teamwork. Emphasizing clear, empathetic feedback and leveraging tools for automating mundane aspects of code review will allow me and my peers to focus on more complex issues, thus improving our efficiency and the quality of our work.

Conclusion

Effective code reviews are more than just a quality assurance step; they are a cornerstone of a collaborative and learning-focused development environment. The tips provided by the Stack Overflow article offer valuable guidance on making good code reviews even better, ensuring that they contribute positively to both project outcomes and team dynamics. As we continue to engage in more collaborative projects, these practices will be essential in shaping how we approach code reviews and interact as a development team.

resources

https://stackoverflow.blog/2019/09/30/how-to-make-good-code-reviews-better/

From the blog CS@Worcester – Josies Notes by josielrivas and used with permission of the author. All other rights reserved by the author.

CS448 – Sprint 3 Retrospective

Last Tuesday, we concluded our final of three sprints for CS448 – Software Development Capstone marking the end of the semester/course aside from our final presentations and the ‘capstone’ to my undergraduate Comp. Sci. degree. This sprint and throughout the semester, my team demonstrated exceptional cohesion and proficiency as we learned new skills and frameworks, tackled challenges, and grew together. At the end of last sprint, we still had a few issues with some of the configuration files in the frontend repo we’ve been focusing on: CheckoutGuestFrontend which were causing Pipeline failures. So, we began this sprint by focusing on getting the pipeline straightened out and then moved into strategizing front-end testing frameworks and implementation after having discussed these topics last sprint with

Team 2.

As a team, we managed to finish all of our tasks for this sprint and come to a tidy/clean close to the semester and Thea’s Pantry project. We split the four .vue files which we needed tests developed for up by person, but all helped each other get the first one/configurations sorted:

‘Fix Pipeline for Frontend’ – As mentioned, there were some issues with the pipeline from our additions and designing of the .vue frontend files for CheckoutGuestFrontend in merging our additions. So, we started off this sprint by focusing on this; we did a group code review sharing screen and we were able to work as a team to identify and resolve the problems, passing the pipeline when we finished. https://gitlab.com/LibreFoodPantry/client-solutions/theas-pantry/inventorysystem/checkoutguestfrontend/-/issues/49

‘After discussing with Team: 01-02, strategize Front-end test implementation’ – After resolving the pipeline issues (and having met with Team 2 to discuss frontend testing), we came back together as a group to strategize how we will go about implementing tests for the various components of CheckoutGuestFrontend. This resulted in creation of four new issues for our board, each representing the task of coding and implementing tests for one of the four .vue files in our repo – planning for one to be addressed by each team member. https://gitlab.com/LibreFoodPantry/client-solutions/theas-pantry/guestinfosystem/guestinfofrontend/-/issues/93

‘Test Layout.vue (most cases)’ – The .vue file which I worked on from our repo was Layout.vue. This is arguably the largest/most complicated of our files containing code for most of the objects on the screen and as the name suggests, assigning their layout on-screen to be cohesive and according to specifications. This also translated to having many components requiring testing, so I assisted in strategizing tests for some of the other files with my teammates so I could be a bit more familiar when designing my tests.  https://gitlab.com/LibreFoodPantry/client-solutions/theas-pantry/inventorysystem/checkoutguestfrontend/-/issues/52

Being a part of this team has been an amazing and enriching learning experience. My group was cohesive and helped each other out when they could, contributing to an enjoyable team environment. Through thorough analysis and collaborative problem-solving sessions, we unearthed and swiftly addressed the root causes of inefficiencies, ensuring a streamlined development process going forward. One of the most significant accomplishments of this sprint was our concerted effort to fortify our codebase with robust frontend tests. Recognizing the importance of software reliability, we dedicated time and resources to meticulously design and implement a suite of tests tailored to our repository’s specific needs. This proactive approach not only bolsters our confidence in the integrity of our code but also enhances our ability to catch and rectify potential issues early in the development cycle. As I look back on the sprint and semester, it’s clear that our team’s collective expertise and collaborative spirit were instrumental in achieving these milestones. By prioritizing quality and teamwork, we’ve not only overcome immediate challenges but also laid a solid groundwork for continued success in future endeavors.

From the blog CS@Worcester – Tech. Worth Talking About by jelbirt and used with permission of the author. All other rights reserved by the author.