Category Archives: Week 12

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-12

Hello blog (mood-status: feeling tired), writing this blog after the family dinner party on a Saturday night. But anyway, on writing about this week-12. Same reason from last-blog, I writing this once again because I am falling behind on blogs when there is nothing to talk about, besides kept being busy with other courses like HWs and projects, etc. (You get the point. Well, if you are a student) 

I decided to go on the Syllabus once again to look at the course topics.

Then I choose the subject of Refactoring.

Refactoring is used to restructure an existing code body, altering its internal structure without changing its external behavior. It’s small behavior-preserving transformations. Each transformation does minor parts, but a sequence of these transformations can produce a significant restructuring. Since each Refactoring is minor, it cannot go wrong. After each Refactoring, the system maintained fully working and reduced the chances of a system breaking during the restructuring.

Refactoring can help lower the cost of intensification. When a software system is robust, there is to keep intensifying it, fix problems, and add new features. But the quality of a codebase makes a big difference in how light it is to make these changes. Often intensifications are applied on top of each other to make it frequently more challenging to make changes. From setting this change, it’s essential to refactor code so that added enhancements don’t lead to unnecessary complexity.

Refactoring is a part of everyday programming. When Refactoring isn’t a particular task that would show up in a project plan, it’s a regular part of programming. When it’s needed to add a new feature to a codebase, look at the current code and consider whether it’s structured to make the recent change straightforward. Refactor the present code to make this new addition easy if it isn’t. Refactoring first in this way is faster than if it hadn’t carried out the Refactoring first.

Once the code program has finished, the change, then added to the new feature. Also, it said it apart and got it working; the notice appears that the resulting code, refactor it into a better shape return to code to become less confusing from how it works. When modifying a program, much of what needs to do already encode into the program. This code may be functions I can quickly call or hidden inside more significant parts. If it is difficult to understand the code; It refactors won’t have to work again next time.

From the blog Andrew Lam’s little blog by and used with permission of the author. All other rights reserved by the author.

Anti-Patterns

Being computer science students, many of us including myself have never really written to much code before starting classes here. And since many of us were beginners at writing code and the practices that come with that, our code tended to be an affront to the eyes of anyone who was unfortunate enough to have to read it. As it turns out, many of the issues with our code actually have names, and are usually referred to under the umbrella term of Anti-Patterns. I found out about Anti-Patterns back when we were covering design smells in class, and while thinking of what I wanted to write for a blog entry this week I decided to go more in depth on some of the different types of anti-patterns out there. Many of which I have definitely been guilty of in the past. GeeksforGeeks has a great article covering what anti-patterns are and different types of them. There were plenty in that article, too many to go into in this post without making it too long, so I will go over the ones that I have done most frequently in the past (Although I almost certainly have done each one of the ones in that article at some point). First and foremost is spaghetti code, which is basically just a term that refers to messy code. Code that works, but is incredibly disorganized, difficult to read, and overall unmaintainable. I can confidently say that many of my first personal projects and class assignments suffered from this. My code would work, but god forbid you want to quickly add or remove a feature without needing to try to interpret what that code originally needed to do. Thankfully with time I have gotten better at organizing my code and making it much more readable and maintainable. Another Anti-Pattern that I have done plenty of times, and actually relates to a previous blog post I made, is the “Boat Anchor”. This is essentially useless code within your program. This can also be referred to as “Dead Code” Code that you wrote thinking it would be useful, but it ended up just taking space. This is actually the issue that YAGNI tries to address. There are still functions in many of my projects that I thought would have a purpose, but now they just take up space. I tend to do this less now, although I cant say I dont slip up every now and then.

https://www.geeksforgeeks.org/6-types-of-anti-patterns-to-avoid-in-software-development/

From the blog CS@Worcester – Sebastian's CS Blog by sserafin1 and used with permission of the author. All other rights reserved by the author.