week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

week-3

Hello,

I am doing some class activities and looking over some questions ahead to save time for a thing or two. I came across the word “Behavioral Patterns” in class Act. 4 (Model 8); I got curious and looked it up. I found two articles that helped me understand the purposes, Problems with solutions, Real-World Analogy, Structure, Pseudo-code, Applicability, How to Implement, Pros and Cons, Relations with Other Patterns.

The Behavioral Patterns are concerned with providing solutions. It is about object interaction – how they communicate, how some are dependent on others, how to separate them to be both dependent and independent, and give both flexibility and testing capabilities—also, the assignment of responsibilities between objects.

The Behavioral Patterns cover many small parts to form the full extend of patterns. Like Interpreter, Template Method/Pattern, Chain of Responsibility, Command, Iterator, Mediator, Memento, Observer, State, Strategy, and Visitor.

Interpreter

The Interpreter pattern: Evaluate any language grammar or expressions. An excellent example; this pattern would be Google Translate, which deciphers the input, and shows us the output in another language. Another example would be the Java compiler. The compiler interprets Java code and translates it into byte-code that the JVM uses to perform operations on the device it runs on. Also, it represents a great way to write simple programs that understand human-like syntax. 

Chain of Responsibility – pass requests along a chain of handlers. Upon receiving a request, each handler processes the requestor gives it to the next handler in the chain. 

Command – Turns a request into a stand-alone object that contains all information about the proposal. This transformation lets pass requests as a method arguments, delay or queue a request’s execution, and support undo-able operations. 

Iterator – traverse elements of a collection without exposing its underlying representation (list, stack, tree, etc.)

Mediator – it reduces chaotic dependencies between objects. The pattern restricts direct communications between the entities and forces them to collaborate only via a mediator object.

Memento – it saves and restores the previous state of an object without revealing the details of its implementation.

Observer – define a subscription mechanism to notify multiple objects about any events to the observed entity.

State – lets an object alter its behavior when its internal state changes. It appears as if the thing changed its class.

Strategy – define a family of algorithms, put them into a separate class, and make their objects interchangeable.

Template Method – the outline of an algorithm in the super-class but lets sub-classes revoke exact steps of the algorithm without modifying its structure.

Visitor – It separates algorithms from the objects on which they operate.

 

From the blog Andrew Lam’s little blog by Andrew Lam and used with permission of the author. All other rights reserved by the author.

Website Architecture

“If your business is not on the internet, then your business will be out of business.” — Bill Gates. In this Industry 4.0 era, this stated is still reasonable for most case. In order to grow and to maintain the business, one major point is to gain more attention through the Internet. Out of any methods, owning a business’s website is a must as a face of the company on the social networking environment.

Therefore, it’s important to understand the structure of a website as a developer and this blog here from HubSpot explaining what website architecture is and providing 8 methods to improve it. From the introduction, I’ve already learned some new information that nearly one in two people leave a website after visiting just one page, a poor site architecture guaranteeing a goodbye from users downgrading the business value.

So basically, a website architecture is the hierarchical structure of website pages, the structure is reflected through internal linking. A typical website structure looks like a rooted tree graph, in which the home page is the root. Subpages from Homepage are branches, and from there, additional pages are developed. Website structure is important as it strengthens the UX (user experience) and SEO (search engine optimization), meaning that if users spend more time on your web, your search ranking will level up as well.

Down here is the list of eight methods that they pointed out to improve the web architecture:

  1. Create a simple top-level navigation menu: Every item should deliver the content according to it
  2. Keep your URLs simple and user-friendly: For example, amazon.com
  3. Model your website architecture after the top players in your industry
  4. Keep your website consistent
  5. Implement the pillar-cluster internal linking model: Child pages are linked to each other
  6. Provide access to most of your website’s pages in 3-4 clicks
  7. Use breadcrumbs: A button that allow users to always be able to go back to your homepage
  8. Create an HTML and XML sitemap: A document that lists out all of crawlable pages on your web

The idea is telling the developers to keep everything simple and users are able to navigate anywhere they want in a convenient way. To illustrate, we all know that Amazon is the biggest ecommerce platform with an outstanding graphical user interface that allow users to look for what they want. In this circumstance, Amazon is the pioneer that affect almost every other site to build somewhat familiar, as well as the web architecture.

To sum up, with the duration of 6 minutes, this blog demonstrated the basic concept of website architecture. Since we will later learn about web architecture, it’s a good read in term of preparation.

From the blog CS@Worcester – Vien's Blog by Vien Hua and used with permission of the author. All other rights reserved by the author.

Dodging the Dangers of Docker

Greetings fellow programmers. Tonight I am pleased to write a rather useful blog, and one that has been “whipped up fresh” (meaning that I wrote the post rather quickly, and in one take). Anyways, onto the material!

As seen in class, it seems as though many of us (especially those who use Windows OS computers) have had trouble installing the “Docker” container program used for our homework. While I cannot guarantee this to be a “foolproof guide” that completely saves the day, hopefully it will provide some pointers and lead those who still struggle with its installation in the right direction.

Helpful hints for installing Docker (on Windows) include:

  1. Enabling “Virtualization” on your task manager “CPU”. It is usually enabled by default, but can be enabled (if disabled) at the BIOS settings screen.
  2. Installing Windows 10 Pro, Education, or some variant other than “Home”. Windows 10 Home will not work (for some reason). Windows 10 Education can be acquired for free from the WSU IT website with verification of a student ID.
  3. Enabling features such as “Hyper-V”. This task gets a bit more complicated; it involves going to the control panel.
An image to provide a visual aid for Tip #1. Please excuse the sloppily made encapsulation of “Virtualization”.

So, why did I post these tips, and especially so late after nearly everyone has already set up the software? To start, I don’t believe that everyone has the software set up, and even those who do may still experience some issues (such as myself). These tips, by the way, were derived from an article linked below (“How to Install Docker on Windows 10” by Harshal Bondre); said article can also be referenced in YouTube videos, class instructions, and other resources.

Personally, I chose this article for two reasons. First, I enjoy helping people, as mentioned in my introduction. I don’t want to see people having to go through the same struggles that I did when learning this material; nothing makes me happier than seeing someone else solve in 5 minutes a problem that took me 5 hours. Second, I firmly believe that maximum proficiency of a material is achieved when someone has the ability to teach it to someone else. If I am able to instruct others on how to install Docker, then it means that I know it by heart. I don’t just know the material so well that I answer questions right, I know it so well that I cannot answer them wrong.

As a student that enjoys helping others (and is aspiring to be a tutor, TA, or other form of future faculty), I may consider using the materials learned here to create a guide to setting up Docker. Alongside some colleagues, we can ensure that the Fall of 2021 will be the last time that any student has this much trouble installing essential class software.

From the blog CS@Worcester – mpekim.code by Mike Morley (mpekim) and used with permission of the author. All other rights reserved by the author.

Software Construction Log #1 – Visualizing Software Design and Modeling through Class Diagrams

            So far in my Software Development courses, the programming assignments I was tasked to work on have been either partially coded or straightforward enough for myself and other students to work on without much of a need of extensive planning beforehand. However, this is not the case when a programming project’s scope expands as the functionalities such project is expected to perform increases in complexity. At this point, simply getting head-first into programming features without at least a basic understanding on how features should interact with one another will do more harm to this project in the long run than save time in the short run.

            Before beginning development, it is important to create schematics for the project in order to properly convey how any components interact with one another and possibly optimize such interactions prior to development, as well as have solid and understandable documentation for the project after development. Recently, I was introduced to Unified Modeling Language (UML) and the class diagrams that can be created using this language and can be used for object-oriented development. For this post, I want to focus specifically on the concept of class diagrams overall instead of how they can be created with the use of UML-based tools.

            As I was researching resources on the topic of class diagrams, I came across the materials listed at the end of this post, though I will mostly focus on this one tutorial post titled UML Class Diagram Tutorial: Abstract Class with Examples on Guru99.Com. Although there exists extensive documentation regarding UML modeling and class diagrams, this article by Alyssa Walker introduces and defines the basic concepts of UML Class diagrams, as well as the types of relations between classes such as Dependency, Generalization, and Association, as well as outline the best practices for designing class diagrams. Though I was introduced to class diagrams conceptually while I was enrolled in a Databases course, I am now able to understand how the concepts used in such diagrams can transfer from database design to software design, specifically the concepts of Association and Multiplicity.  

           Moreover, by examining the class diagrams provided in the article, I can understand better why it is important to literally visualize the interactions between classes, especially when it comes to developing software in object-oriented languages; by seeing how the classes implemented will interact with each other, as well as how the features I wish to implement will add complexity to the project overall. Therefore, any factor that contributes to increasing complexity in a project in any capacity can be properly taken care of well in advance without sacrificing additional development time in the long run, as well as provide important documentation that can contribute in the maintenance of the project after development.

Direct link to the resource referenced in the post: https://www.guru99.com/uml-class-diagram.html

Recommended materials/resources reviewed related to class diagrams:
1) https://developer.ibm.com/articles/the-class-diagram/
2) https://www.microtool.de/en/knowledge-base/what-is-a-class-diagram/
3) https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
4) https://www.bluescape.com/blog/uml-diagrams-everything-you-need-to-know-to-improve-team-collaboration/

From the blog CS@Worcester – CompSci Log by sohoda and used with permission of the author. All other rights reserved by the author.