The recent explosion of AI has invaded almost every industry
nowadays. It has become something of a buzzword, with many companies loudly
proclaiming how they are making use of the emergent technology to benefit
their customer bases. Chat gpt and other types of AI have already
started creating all sorts of problems within the academic setting, giving
many students an easy out on writing essays. Not only that, but AI is also
now being attributed as one of the main driving forces behind massive
layoffs within the tech industry and beyond.
All of that being said, how can AI be utilized to improve software testing.
I know that immediately trying to think of ways for AI to replace even more
jobs within the software industry can be a bit jarring after bringing up the
problems it has already created, but I wanted to look into how the future
may look if we were to utilize this technology to expedite the testing
process. It is entirely possible that we could teach proper testing
etiquette to an AI model and have it automatically produce test cases.
Future IDEs could have an auto generated test file feature added to them to
help developers quickly create basic test cases. Well, I didn’t have to
speculate for long as one google search later I had already found a website
for using an AI to create test cases. This does pose a rather worrying
question about the speed at which AI is developing and whether our modern
society can keep up with it, but I would rather not dwell on such topics.
Now, there have been concerns about the proliferation of AI potentially
poisoning the well of data that they use, and I do believe that certain
measures will need to be taken to prevent another event like the dot com
bubble burst from happening again today.
https://www.taskade.com/generate/programming/test-case
Another use case for artificial intelligence that has been
proposed is the generation of “synthetic data”. This is data created
to mimic real life data in order to test and train programs. DataCebo is one
such company, and has been using an AI to create synthetic data. Called
Synthetic Data Vaults, or SDV for short, These systems are usually sold to
data scientists, health care companies, and financial companies. The purpose
of creating realistic synthetic data is so companies can train programs in a
number of scenarios without relying on historical data, which was limited to
that which has already happened. This also gets around privacy issues of
companies using people’s private data unethically.
https://news.mit.edu/2024/using-generative-ai-improve-software-testing-datacebo-0305
From the blog CS@Worcester Alejandro Professional Blog by amontesdeoca and used with permission of the author. All other rights reserved by the author.