Before I dive into my final installment of this CS series (for now), I wanted to say thank you if you actually read any of these posts and thank you to my new followers for dealing with the notifications you must have gotten.
For this last post, I wanted to discuss the article 5 Reasons You Are Wasting Your Testing Time by Joel Montvelisky. The author expresses how everyone can do testing but not everyone can do “good testing,” which incorporates more than just what is basic checking.
A short list of main reasons why a lot of people tend to waste time that could have been spent testing other things includes:
- Not having clear goals
- Not understanding what or how much the feature means to your End User
- Not keeping track of what was tested and potential discoveries
- Not consulting what you already know or using references
- Not giving feedback that could be shared to help others
I agree with most of what Montvelisky says as I have personally noticed what has happened from my experience as a Software Quality Assurance Intern when any of the five things above took place based on a task. It is important to understand that sometimes these things may be out of your control but you should still try your best to avoid miscommunication wherever possible.
Montvelisky’s content has not necessarily changed the way I will work as I have already been consciously making an effort to understand what I am reviewing, how stuff is meant to work, logging tasks, connecting tasks to previous occurrences, and communicating with the QA team. If I had read this article before I started working, it would have been more useful as it would serve as a foundation to how one should think of testing beyond the basic functionalities.
Something I wanted to emphasize is the post-test reviews and feedback sessions with peers. I found that if someone else needed to learn about a project or a task had to be communicated with a client, logging any kinds of notes or information was better than not having anything prepared to discuss. They do not necessarily have to be posted for everyone to access but it would be good to note it in any sort of text editor for future reference. I think an example of when to note things is if you found something that does not prevent your current task from being approved but it still affects something for the overall program.
Overall, when testing things I believe you should trust your instincts on reporting things you find. It helps when you try to imagine how much it could affect a program in the long run if not brought to someone’s attention, even if it may seem minimal.
Best of Luck,
Sam
Article: https://qablog.practitest.com/5-reasons-you-are-wasting-your-testing-time/
From the blog CS@Worcester by samanthatran and used with permission of the author. All other rights reserved by the author.

As my last fall semester comes to a close, I wanted to write about an article on something pretty interesting I learned about in my software construction and design course.
Testing, testing. I may need your approval on this article I read by Software Testing Magazine on Approval Testing. Approval testing, as defined by this article, is a way of software testing that results in presenting the before and after of an application for a user (ex: software development team) to review it and potentially approve it. It’s more of a visual representation of testing and one of the major cons is how the results have to be checked manually.
When using architecture patterns, how will you know which one to choose? Peter Wayner, an independent author for TechBeacon takes five architectures that the majority of programs today use and broke them down into their strengths and weaknesses. Through this, it seems like he is hoping to guide users to selecting the most effective software architecture pattern for their needs.
There are lots of “rules” we must follow in object-oriented software development and the article The Genius of the Law of Demeter by Javadevguy summarizes how they are useful. From what I put together, it seems like the Law of Demeter took abstract concepts and basically put them into a universal set of rules for Object-Oriented code.
When coding, users always have to be conscious about the way their code may be implemented or used in the future by different services leading to potential misuse. After reading Code Health: Make Interfaces Hard to Misuse by Marek Kiszkis, it made me think about how important communication between testing code is.
It is also good to remember that at the end of the day, code should be defensive but not too defensive to the point that complexity is increased and performance overall is reduced. Kiszkis says “it is not always practical to have a foolproof interface” because there will be situations where some requirements are things that cannot be expressed in an interface.
Over the weekend, I had the chance to sit down and listen to another podcast episode by Developer Things. The title, Women in Technology (with Megan Horton), caught my eye as I am always on the lookout to learn about other women’s experiences in technology.
Imagine being several years into your role as a developer; you’ve had a long week, a big project to push tomorrow and suddenly… you’re stuck on something. And you’ve double-triple-quadruple checked to make sure everything is working by code review but you cannot put your finger on how it is not quite perfect. What’s wrong? Let’s find out.
A few weeks ago, I was introduced to JUnit testing in my Software Quality Assurance & Testing course. The blog post tutorial linked below is one I would recommend to those interested in learning about assertion. Reading this post has helped me review the concepts I have learned and I will share what helped me better understand the topic of writing basic assertions with AssertJ.
In my software design course, I recently learned about how using design patterns helps you code better. I thought it would be a good review to go over the concepts this article introduces and potentially link it to things from class and maybe even add some things we did not get through during class.