“Design patterns represent common software design problems and well-tested solutions to those problems.” This is a line from my class’s first exercise introducing us to design patterns. In it we learned that in order to have scalable code, certain types of solutions, design patterns, are used. They are the culmination of previous developers’ struggle adding functionality to already existing code.
When we learned about design patterns in class and the homework, we handled singleton, strategy, simple factory design patterns. This GeeksforGeeks article adds onto the classwork by first separating their list into Creational, Structural, and Behavioral types. Creational patterns address when objects are made by separating how the object is formed from how it is implemented. Included in this type are the Factory and Singleton patterns we had already seen as well as new patterns called the Prototype, Builder, and Abstract Factory patterns. Under the Structural category are methods that handle class/object composition, so they utilize inheritance and help to structure efficient interfaces or implementations. Here they included the Adapter, Bridge, Composite, Decorator, Facade, Proxy, and Flyweight patterns all brand new to me. Finally came the Behavioral patterns that at first brush sounded like it was primarily focused on solely on the responsibility of objects and classes but actual include how these objects and classes communicate with each other. In this section returned the strategy design pattern along with Observer, State, Command, Chain of Responsibility, Template, Interpreter, Visitor, Mediator, and Memento patterns. At the end of this article is an FAQ section where they explain things such as how you can compare algorithmic solutions to design patterns in terms of computational solutions and structural solutions.
I chose this article because it showed me an entire new category of design patterns that tackle interface creation, something that I personally find to be a weak point in my understanding of OOP design. I actually clicked into the Bridge design pattern because it allows for abstraction and implementation to be developed separately. So when you have multiple subclasses of subclasses, their example used ProduceBus and AssemblyBus under the Bus class under the Vehicle class, you have an issue any time you wish to modify the middle level (Bus) class. The Bridge pattern says to separate the Produce and Assembly bus implementations into their own subclass of an interpreter called Workshop that works on objects of the Vehicle class. This way changing the Bus class doesn’t directly change how the Produce and Assembly portions work, which thus saves time.
I have thus bookmarked this page so that until I can pull these patterns from memory I can make use of these numerous proven solutions. It is an amazing resource since it has links to more in depth explanations of each design pattern so that readers can truly grasp just how these tricks work in practice.
Link:
https://www.geeksforgeeks.org/software-design-patterns/
From the blog CS@Worcester – Coder's First Steps by amoulton2 and used with permission of the author. All other rights reserved by the author.