Category Archives: Technology

Masters in Scrum

One method I’ve encountered repeatedly in both my coursework and during discussions with peers is Agile—specifically, the Scrum framework. To better understand it, I recently read an article titled “Scrum Mastering the 3 Pillars, 5 Values, and 7 Key Principles of Agile Project Management”, which provides a clear breakdown of how Scrum works and why it’s so effective in software development. I found this resource insightful, and it’s something I can definitely apply in my future

The article explains the fundamental elements of Scrum, which include the 3 Pillars, 5 Values, and 7 Key Principles that form the foundation of this Agile framework. The 3 Pillars—Transparency, Inspection, and Adaptation—ensure that the process is open, regularly assessed, and flexible. The 5 Values—Commitment, Courage, Focus, Openness, and Respect—help create a collaborative and supportive team environment. Finally, the 7 Key Principles emphasize continuous improvement, self-organizing teams, and the importance of simplicity in problem-solving.

I selected this article because, as a beginner in computer science, I wanted to understand how project management frameworks like Scrum can be applied in real-world software development. Being new to coding and programming, I often feel overwhelmed by the amount of information and tools available. Scrum, with its structured approach, offers a clear way of organizing tasks, fostering teamwork, and ensuring that progress is continually monitored. Learning about Scrum is relevant to my future career because it’s widely used in the tech industry, particularly for software development and managing complex projects.

From reading the article, I gained a solid understanding of the core principles that make Scrum effective. The 3 pillars stood out to me, especially Transparency. As a student, I can relate to the importance of transparency in team projects where communication is key to understanding who’s doing what, when, and how. Inspection and Adaptation also made me realize how crucial it is to frequently check our progress and be willing to change course when necessary, which can save a lot of time and effort in the long run.

The 5 Values were a reminder of the importance of collaboration and maintaining a positive, respectful team environment. These values are essential, not just for Scrum but for any professional setting. I particularly appreciated the focus on Courage, which resonated with me as I’m still learning how to approach new and challenging problems in my coursework.

Finally, the 7 Key Principles reinforced the idea of simplicity and the need to avoid overcomplicating solutions, something I’ve noticed in my own work when I get caught up in trying to build complex solutions rather than focusing on what’s truly necessary.

I plan to apply the principles of Scrum, especially the importance of adaptation and simplicity, in my future projects. Whether it’s a group coding project or individual work, Scrum’s emphasis on regular inspection and continuous improvement will help me ensure that I’m always learning and adjusting as I go.

Resource:

“Scrum Mastering the 3 Pillars, 5 Values, and 7 Key Principles of Agile Project Management”

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Software Maintenance

Source: https://www.geeksforgeeks.org/software-engineering-software-maintenance/

This article is titled “Software Maintenance – Software Engineering.” Software maintenance “refers to the process of modifying and updating a software system after it has been delivered to the customer.” There are many different aspects involved in this including: fixing bugs, adding new features, and keeping up with new hardware and software requirements. Maintenance is very important for ensuring that software is able to last long. This process can be expensive and complex, so these factors must be taken into account during the planning of a software development project. The important tasks in regard to software maintenance are: bug fixing, enhancements, performance optimization, porting and migration, re-engineering, and documentation. Summarizing these tasks, it is important to find and fix errors quickly, add new features/improve existing ones, improve the performance of the software, adapt the software to run on different hardware, improve the design, and maintain accurate documentation of all of these processes. There are quite a few different types of software maintenance, but they can be categorized into proactive and reactive types. “Proactive maintenance involves taking preventive measures to avoid problems from occurring, while reactive maintenance involves addressing problems that have already occurred.” Maintenance can be done by stakeholders, the development team, a third-party, and they can be both planned or unplanned. Planned maintenance can be described as regular maintenance (bug fixes) while unplanned maintenance can be described as reactive maintenance that occurs when something unexpected happens. Maintenance can fall into these different categories: corrective maintenance, adaptive maintenance,  perfective maintenance, and preventive maintenance. Corrective refers to fixing bugs and enhancing performance of the system. Adaptive refers to modifications being made when a customer needs the software to run on a different system. Perfective refers to the adaption of the software when a customer has a demand. Lastly, preventive maintenance refers to modifications that focus on the prevention of future issues with the software. Software maintenance is important but there are some things to consider: the cost, complexity, possibility of new bugs, users not updating the software, compatibility, technical debt, and end-of-life (where maintenance isn’t possible anymore or cost-effective).

I chose this article because I found it in the syllabus and thought the topic to be interesting. We are always learning about the development of software, but the idea of maintaining it over the long term isn’t as heavily considered. A large part of the work of a software development team is to obviously develop software but it is also important to learn about how it can maintain a sense of longevity free from error and customer complaints. I will keep the information I learned from this article in mind in future projects and when I’m working with a team to ensure that I’m developing software all the while keeping maintenance in mind. If it is considered during the development process, the maintenance process will be much easier.

From the blog CS@Worcester – Shawn In Tech by Shawn Budzinski and used with permission of the author. All other rights reserved by the author.

Trying to use Rest API

In this blog post, I’ll share my thoughts on an article I read titled “What is a REST API?” from Cleo’s blog. This article dives into the concept of REST APIs (Representational State Transfer), and after reading it, I feel like I now have a much clearer understanding of how REST APIs work and why they’re so important in modern web development. This topic ties directly into our web development course, where we’re learning about web services and how to connect different systems.

The article explains what REST APIs are and why they are widely used. It starts by explaining the core principles of REST, such as statelessness and resource-based URIs (Uniform Resource Identifiers). In simple terms, REST APIs allow different software systems to communicate over the internet by sending requests (like GET, POST, PUT, DELETE) to a server, where each request is independent and contains all the necessary information to be processed. The article also discusses the scalability and flexibility of REST APIs, which make them a popular choice for building web applications that need to handle a large number of users or integrate with other services.

I chose this article because I’ve heard the term “REST API” thrown around in class and in tech articles, but I never fully understood how they work. As a computer science beginner, I often find myself struggling to grasp concepts like APIs and how they fit into the bigger picture of web development. Since we’re covering APIs and web services in our course, I figured reading a simple, clear article would help me solidify my understanding of this important topic.

After reading the article, I feel much more confident about my understanding of REST APIs. Before, I knew APIs were used to transfer data between different applications, but I didn’t fully understand how REST APIs specifically work. The article’s explanation of statelessness was particularly eye-opening to me. I had no idea that each request in a REST API is self-contained, meaning it doesn’t rely on any prior interactions to be processed. This makes sense when you think about how web applications need to be scalable and efficient—keeping things stateless helps ensure the server isn’t overloaded with unnecessary data.

Another thing I found interesting was the explanation of how RESTful APIs use HTTP methods (like GET and POST) to interact with resources. It made me realize how intuitive and flexible REST is for creating services that can easily be integrated with other software systems. I now feel much more comfortable working with APIs.

I want to explore more advanced topics, like authentication and error handling, which the article briefly touched on. This will help me build more secure and reliable web applications.

Resource:

https://www.cleo.com/blog/blog-knowledge-base-what-is-rest-api

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Introduction to Pattern Designing

Source: https://www.geeksforgeeks.org/introduction-to-pattern-designing/

This article is titled “Introduction to Pattern Designing.” In regards to software development, “pattern designing refers to the application of design patterns, which are reusable and proven solutions to common problems encountered during the design and implementation of software systems.” These reusable design patterns showcase relationships that occur between classes or objects. They are language dependent, so they can be described as an idea that makes code flexible and overall speeds up the process of development. Their purpose is to solve common problems. There are three main kinds of design patterns, creational, structural, and behavioral. “Creational design patterns abstract the instantiation process.” Creational design patterns offer a sense of flexibility in regards to “what gets created, who creates it, how it gets created, and, when.” Knowledge about which concrete class is being used is encapsulated and the way instances of classes are created is hidden. “Structural design patterns are concerned with how classes and objects are composed to form larger structures.” Inheritance is used to create interfaces/implementations. Structural design patterns are good for when you want to make independent class libraries collaborate effectively with one another and offer flexibility regarding object composition. “Behavioral design patterns are concerned with algorithms and the assignment of responsibilities between objects.” Patterns of communication are being described here. Inheritance is used to divide behaviors between classes, object composition is used for behavioral object patterns, and the object patterns encapsulate behaviors in objects. Overall, the benefits of pattern designing are reusable solutions, scalability, and abstraction/communication. The downfall of it however is that there is a learning curve while you try to understand the patterns, there may be concerns with when you should apply the patterns in your code, and if patterns aren’t implemented consistently and in correlation with the advancement of the system, maintenance issues may occur. But regardless, they are a great way to solve common problems during the development process.

I chose this topic because the idea of design patterns was in the syllabus and it interested me. We learned about design patterns such as Factory, Strategy, and Singleton, but reading about the larger terms of creational, structural, and behavioral patterns offered deep insight into the topic. The supposed benefits of common methodologies in software development are always presented but it is also good to know about the downfalls, which I am glad this article showed about the design patterns. When I am working on a team or in the workforce, I will definitely reference these design patterns to improve the maintenance capability and scalability of my code, and do so in a way which I am able to avoid the downfalls of implementing them incorrectly. 

From the blog CS@Worcester – Shawn In Tech by Shawn Budzinski and used with permission of the author. All other rights reserved by the author.

To Be Agile

I recently came across a blog post on LucidSpark titled What Is Agile Methodology? that explains the basics of Agile and its role in modern software development. Agile is a project management and software development approach that emphasizes flexibility, collaboration, and customer feedback. The methodology breaks down large projects into smaller, manageable chunks called sprints—usually lasting a few weeks. This approach allows teams to adapt quickly to changes, make continuous improvements, and deliver working software regularly. The blog goes on to explain the Agile Manifesto, which highlights values like individuals and interactions over processes and tools, and customer collaboration over contract negotiation.

I chose this article because it offers a clear, easy-to-understand explanation of Agile, a methodology that I’ve heard about a lot in my software engineering classes and in discussions about software projects. I wanted to learn more about it and see how it’s used in real-world development, especially since I might be using it in some of my future group projects. The post helped clarify some of the concepts I’ve learned in theory and gave me a better understanding of how Agile works in practice.

One of the most interesting takeaways from this article was the emphasis on adaptability. In traditional project management, there’s often a lot of upfront planning, but Agile is all about being able to adjust quickly to changes—whether that’s changes in customer requirements or new technologies. I realized that in software development, the ability to pivot and change direction is just as important as having a solid plan in the first place. This idea of “failing fast” and improving iteratively really resonated with me. I’ve noticed that when I work on assignments or personal projects, sometimes things don’t go as planned, and it’s frustrating to try and stick to a rigid approach. Agile’s flexibility seems like a better way to handle those situations.

Another part of the article that stood out was the focus on collaboration. Agile teams work closely together and communicate regularly, which is different from the more isolated approach I’ve seen in some projects where team members work separately and only come together at milestones. The post explained how frequent communication, daily stand-ups, and collaboration with customers can help create better products and avoid misunderstandings. This is something I want to keep in mind for group projects, especially in coding assignments where communication can make a huge difference in the quality of the work.

In my future career, I plan to apply what I’ve learned by adopting some Agile practices in my own projects. I want to be able emphasize collaboration and open communication in group assignments, which could lead to more efficient and effective teamwork.

Resource:

https://lucidspark.com/blog/what-is-agile-methodology

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Smelly and Debt

I recently read an article on Opsera titled What Is Code Smell? that explores the concept of code smells and how they relate to technical debt. The article explains that code smells are indicators of deeper issues in software design, like redundant code, overly complex functions, or lack of proper documentation. While these smells don’t necessarily cause bugs, they can make the code harder to maintain or extend in the future. Technical debt, on the other hand, refers to the trade-off between short-term efficiency and long-term code quality. It’s like borrowing from the future to meet deadlines now, but it eventually has to be repaid with interest—usually in the form of extra work to fix the issues caused by the shortcuts taken.

I chose this resource because it gives a practical explanation of two topics that I’ve encountered in my software engineering classes: design smells and technical debt. These are concepts that seemed theoretical at first, but this article helped me understand how they show up in real-world projects. As I start working on my own coding assignments, I can see how these issues might impact my projects if I don’t pay attention to them early on.

The article made me realize just how crucial it is to identify and address code smells early in the development process. For example, the article points out that long methods and duplicated code can be a sign of poor design that will slow down future changes. At first, I thought that refactoring or improving code design was something only necessary when a project was nearing completion. But now I understand that addressing these problems early can save a lot of time and effort in the long run.

What really stood out to me was the connection between technical debt and long-term project maintenance. As a student, it’s easy to think that as long as the code works, it’s good enough. But this article emphasized that taking shortcuts to meet deadlines may create technical debt that leads to problems later, such as bugs or a codebase that’s difficult to work with. I’ve already seen this in my own projects—trying to push through a solution quickly, only to realize later that the code is harder to manage than I expected.

In the future, I plan to pay more attention to clean code practices. I’ll aim to refactor code regularly and avoid taking shortcuts that might seem like a quick fix but could lead to bigger problems. This approach will not only improve my coding skills but also make my future projects more maintainable.

Resource:

What Is Code Smell? – Opsera Blog

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Understanding SOLID Principles: A Guide

As a student learning software design, I’ve heard about the SOLID principles in class, but I wanted to dive deeper to understand how to actually use them. I came across a blog post called “SOLID Principles — The Definitive Guide” by Midhun Vincent on Medium, which breaks down each of the five principles in a way that makes sense for someone new to object-oriented design. The guide was really helpful and lined up well with what we’re covering in my course, so I thought it would be a good opportunity to see how these principles could improve my coding now and in the future.

The article explains the SOLID principles, which are five important guidelines for creating object-oriented software that’s easier to understand, maintain, and extend. The first principle, the Single Responsibility Principle (SRP), says that each class should do only one thing, making it easier to maintain and modify. The Open/Closed Principle (OCP) suggests that classes should be open for extension but closed for modification, meaning you can add features without changing the original code. The Liskov Substitution Principle (LSP) ensures that subclasses can replace their parent class without breaking the system. The Interface Segregation Principle (ISP) advises creating small, specific interfaces rather than large, general ones. Finally, the Dependency Inversion Principle (DIP) suggests that high-level modules should depend on abstractions, not low-level modules, which makes the code more flexible. These principles help make code cleaner, more modular, and easier to adapt over time.

I picked this article because, while the SOLID principles are useful, they can seem pretty abstract at first. The post explains them in a way that feels practical, with examples that make it easier to apply the principles to real-world coding problems. Plus, the examples connected well with the projects I’ve worked on in my course, especially when it comes to organizing code and making it easier to debug. Seeing how these principles prevent code from becoming too messy gave me a new way of thinking about my own assignments.

My Takeaways and Reflection

Before reading this post, I knew the basic ideas behind SOLID, but I wasn’t sure how to apply them in my own code. Now, I get why each principle is important and how they can save time by reducing debugging and refactoring. For example, the Single Responsibility Principle made me realize that I often give classes too many responsibilities, which complicates fixing bugs. By applying SRP, I can keep things simpler and reduce errors.

Looking ahead, I plan to use these principles in my projects, especially the Open/Closed Principle and Interface Segregation Principle. I can see how they’ll help me write code that’s easier to update and adapt. Understanding SOLID will definitely give me a strong foundation as I take on more complex projects in the future.

Resource:

View at Medium.com

From the blog Computer Science From a Basketball Fan by Brandon Njuguna and used with permission of the author. All other rights reserved by the author.

Anti-Patterns

Source: https://www.freecodecamp.org/news/antipatterns-to-avoid-in-code/

This article is titled “Anti-patterns You Should Avoid in Your Code.” It specifically mentions six of them, being: Spaghetti Code, Golden Hammer, Boat Anchor, Dead Code, Proliferation of Code, and the God Object. An anti-pattern, in regards to software development, is an example of how not to solve a problem in a codebase. They are not a positive thing, they are examples of practices to avoid in the development process. Anti-patterns lead to technical debt, code that you have to eventually come back to and properly fix later. Spaghetti Code is the most common, it is code that doesn’t have much structure. It is called Spaghetti Code because everything is difficult to follow, files are located in random places, and when visualized in a diagram, it appears to be a jumbled mess, much like spaghetti. Golden Hammer references a scenario where you follow a certain process that doesn’t necessarily align perfectly with the project but still works well enough. This may not seem like a large issue, but is obviously not the best practice to follow because it’ll cause performance issues in the long run. You should always use a process that is the best fit for your project, even if you need to teach yourself or learn something new. Boat Anchor is when developers leave code in the codebase that isn’t actively being used in the hopes of it being needed later and thus not requiring much effort to implement when it is eventually needed. The main problem with this is when it comes to maintaining the code. It leads to the question of what code in the codebase is unused and what is being actively used. Trying to fix a bug in the system on code that isn’t even being used is a time waster. Dead code is code that doesn’t look like it’s really doing anything, but it is being called from many different places. This leads to problems when trying to modify the code because no one is unsure what is actually dead. Proliferation of Code is about objects that have the purpose of invoking a more important object, meaning it doesn’t really do anything on its own. The action of invoking the more important object should be set to the calling object. Lastly, the God Object is an example of an object that does too much. Objects should only be responsible for doing one thing, referencing the Single Responsibility principle in SOLID. 

I chose this particular source because I appreciated the way examples were clearly given along with the 6 examples of anti-patterns, and upon reviewing the syllabus the topic “anti-patterns” seemed interesting. When you’re learning computer science a lot of the time you’re learning about things that you should do and not about things that you shouldn’t do. I really enjoyed reading about these 6 examples of common mistakes that developers make in industry. It’s important to both recognize good and bad practices to ensure that your projects are properly optimized. I can definitely see myself referencing anti-patterns when designing code in the future so my code can easily be maintained. 

From the blog CS@Worcester – Shawn In Tech by Shawn Budzinski and used with permission of the author. All other rights reserved by the author.

Was it really all about frameworks?

What’s a Framework? All About Software Frameworks is an article written by Luke Stahl. I found it on dev.to, but it can also be found on the Contentful Blog. Links to both blogs are available in this post. The reason I chose this article is that I’ve heard a lot about frameworks since I started exploring web application development, and they always confused me. I used to struggle to understand what they were and what they were built for. Luke Stahl’s article answered both of these questions for me, though it also left me with a few more.

The article provides a general overview of frameworks for software development, web development, and working with APIs. However, it then pivots toward web development frameworks, which left me wondering about the differences between them. While it clearly explains the distinctions between backend and frontend frameworks, it misses covering some other differences I initially expected.

The author also includes a fairly extensive list of the benefits that frameworks bring to development, along with a brief list of challenges. For me, it’s always a bit concerning when something presents itself with so many benefits and so few downsides. Still, the benefits outlined are appealing and useful for developers.

Frameworks, as explained by Luke Stahl, are essentially blueprints or templates for a particular final product. They provide the essential building blocks and materials required to create your software or web application. A framework offers a skeleton for your application, allowing you to build functionality on top of it.

Halfway through reading the article, I began to wonder about the difference between a framework and a code library. Thankfully, and to my surprise, it seems Luke anticipated this question. He includes an explanation from two outside sources, David Fateh and Alvin Bryan. Both summarize that frameworks act as templates, while code libraries serve as tools you can use to build on top of that template.

One point that caught my attention—and that I believe is very important—is that most frameworks are FOSS (Free and Open Source Software). Being free and open source brings many advantages. Such products undergo extensive testing by a diverse group of programmers, across various applications, which increases the test sample size. This added testing leads to greater reliability, as it helps ensure that any new functionality works as intended. Another benefit of free and open-source products is the large community that often forms around them. This means that if you encounter questions or difficulties, it’s likely that someone else has already addressed them.

From the blog CS@Worcester – CS Today by Guilherme Salazar Almeida Nazareth and used with permission of the author. All other rights reserved by the author.

GRASP

Source: https://www.youtube.com/watch?v=GcqTrlL_Htw

This video from YouTube is titled “Design Patterns GRASP // Object Oriented Analysis and Design (ICS).” As stated in the title, it goes over the design patterns of GRASP, or General Responsibility Assignment Software Patterns. GRASP is a set of 9 principles that relate to object-oriented design that help developers/engineers assign certain responsibilities to certain variables, classes, objects, etc. in software. The overall purpose of GRASP isn’t to create “fancy” code, but rather to create maintainable and reusable code/software. The 9 principles are information expert, creator, controller, low coupling, high cohesion, polymorphism, pure fabrication, indirection, and protected variations. “Information expert” places responsibility on classes that have the required information to complete it, wanted behaviors and data are put together. “Creator” places responsibility for the creation of instances of classes to classes that would use it. “Controller” places responsibility for handling system events to a class that describes the event, known as the controller. “Low coupling” states that classes should be as independent as they can be from other classes. “High cohesion” states that classes should have clear purposes with responsibilities that relate to it. “Polymorphism” is implemented so new behaviors can be added without changing preexisting code. “Pure fabrication” states that new classes should be created if there isn’t an already existing one that fulfills a desired requirement. “Indirection” states that dependencies among classes should be minimized so changes can be made without having an impact on other parts of the system. Lastly, “protected variations” encourages developers to design the system in a way that variations in behaviors are negated through encapsulation. 

I chose this particular source because we haven’t covered this topic in class yet and it seemed interesting, I found the topic from the syllabus. This video had a low amount of views and I wanted to give it a chance. After watching the video, I appreciated the fact that the information was presented in a straightforward manner and offered visual examples for each of the 9 principles of GRASP. After learning about Agile methodologies, it was interesting to learn about GRASP, because in my opinion it seems as though instead of being a set of principles of workplace improvement, GRASP seems to be a set of principles for actual work improvement. Overall, the material impacted me in a positive way because I appreciate the idea of everything in a system/software having a certain responsibility, and can definitely see how this will benefit me in the future when I work on more projects related to software development. I will certainly keep GRASP in mind for these future projects. 

From the blog CS@Worcester – Shawn In Tech by Shawn Budzinski and used with permission of the author. All other rights reserved by the author.